
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1981

Memory system for a relational database processor
Vijaya Kumar Konangi
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Konangi, Vijaya Kumar, "Memory system for a relational database processor " (1981). Retrospective Theses and Dissertations. 7439.
https://lib.dr.iastate.edu/rtd/7439

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F7439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F7439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F7439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F7439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F7439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F7439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F7439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/7439?utm_source=lib.dr.iastate.edu%2Frtd%2F7439&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the

most advanced technological means to photograph and reproduce this document

have been used, the quality is heavily dependent upon the quality of the material

submitted.

The following explanation of techniques is provided to help you understand

markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document

photographed is "Missing Page(s)". If it was possible to obtain the missing

page(s) or section, they are spliced into the film along with adjacent pages.

This may have necessitated cutting through an image and duplicating
adjacent pages to assure you of complete continuity.

2. When an image on the film is obliterated with a round black mark it is an
indication that the film inspector noticed either blurred copy because of

movement during exposure, or duplicate copy. Unless we meant to delete

copyrighted materials that should not have been filmed, you will find a good

image of the page in the adjacent frame. If copyrighted materials were

deleted you will find a target note listing the pages in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photo­

graphed the photographer has followed a definite method in "sectioning"

the material. It is customary to begin filming at the upper left hand corner of

a large sheet and to continue from left to right in equal sections with small

overlaps. If necessary, sectioning is continued again -beginning below the

first row and continuing on until complete.

4. For any illustrations that cannot be reproduced satisfactorily by xerography,

photographic prints can be purchased at additional cost and tipped into your

xerographic copy. Requests can be made to our Dissertations Customer
Services Department.

5. Some pages in any document may have indistinct print. In all cases we have

filmed the best available copy.

Universî
Micrdnlms

International
.•illDN ANNAKHUI^ Ml U-ilOh

www.manaraa.com

8209139

Konangi, Vyayi Kumar

MEMORY SYSTEM FOR A RELATIONAL DATABASE PROCESSOR

loMMX State University PH.D. 1981

University
Microfilms

Interndtionsi 300 N. Road. Ann Arbor, Ml 48106

www.manaraa.com

Memory system for a relational

database processor

by

Vijaya Kumar Konangi

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Electrical Engineering

Approved :

In Charge of Major Work

M^A^ Department

For the Graduate College

Iowa State University
Ames, Iowa

1981

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

ii

TABLE OF CONTENTS

Page

INTRODUCTION 1

REVIEW OF LITERATURE 4

OBJECTIVE AND OVERVIEW OF THE RESEARCH 27

ARCHITECTURE OF THE MEMORY SYSTEM 32

EVALUATION OF THE SYSTEM 55

CONCLUSIONS 79

BIBLIOGRAPHY 83

ACKNOWLEDGMENTS 85

www.manaraa.com

1

INTRODUCTION

An overall trend which is visible in database management

today is the following: users are becoming increasingly

oriented toward the information content of their data and

decreasingly concerned with its representation details.

Increasingly, the user interface of a modern database

management system deals with abstract information rather than

with the various bits, pointers, arrays, lists, etc., which

may be used to represent information. Responsibility for

choosing an appropriate representation for the information

is being assumed by the system and is not exposed to the

end user; indeed the representation of a given fact may

change over time without the user being aware of the change.

The general term for this trend away from representation

details is data independence.

Considerable attention is being paid nowadays to n-ary

relations as a tool for database management. Codd was the

first to give a rigorous definition for n-ary relations

in the database context and to emphasize their advantages.

Codd introduced concepts which have set the direction for

research in relational database management (7).

The relational data model makes it possible to eliminate

representation-dependence from the user interface. In the

relational model, information is represented in only one way

www.manaraa.com

2

at the user interface; by data values. User requests be­

come free of any dependence on internal representation,

and hence may be framed in a high-level, nonprocedural

language. At the same time, the system becomes free to

choose any physical structure for storage of data, and to

optimize the execution of a given request.

There is much to be said on the limitations imposed by

use of conventional Von Neumann processors for nonnumeric

applications such as database management. The use of a

single processor, even a high speed one, for searching and

manipulating data in large databases is simply too slow to

meet the response time requirement of many applications.

Software techniques such as data structures, file organiza­

tional techniques, directories, cross reference pointers,

computed addressing, etc., alleviate the speed problem to a

certain extent. However, they introduce undesirable side

effects such as excess storage requirement, the problem of

updating pointers, index files and directories, data in­

consistency, and above all greater software overhead. Recent

research efforts toward a high-level relational data model

further show the limitations of conventional computers in

supporting the high-level user's view of data and processing

requirements. The reason for these limitations is quite

obvious. A data model or a language which is more

www.manaraa.com

3

convenient for the user typically is more difficult to imple­

ment on a machine which was not designed mainly for supporting

the high-level data model or the language. Another very

serious problem in the existing data base management systems

is that data are not stored at the place where they are

processed. To "stage" the data into the main memory for

processing is very time consuming. It often ties up the

important resources of a computing system such as communica­

tion lines, channels, and data buses. Ideally, data should

be processed at the place where they are stored to avoid

spending time in moving data between the main memory and

secondary memories. There is definitely a pressing need for

research and development work in database machines whose main

functions are to efficiently carry out search, retrieval,

update, insertion, and deletion.

The purpose of this dissertation is to study an associa­

tive memory with content addressing capability for a rela­

tional database processor. Given the search operand, the

memory system retrieves the relation or the tuples of a

relation which satisfy the search operand. The performance

of the proposed system is evaluated in comparison to con­

ventional software-based database management computing

systems and its economic viability assessed.

www.manaraa.com

4

REVIEW OF LITERATURE

The three popular approaches to database access can be

classified as hierarchical, network, and relational.

The network approach may be characterized as a host-

language (usually Cobol) embedded network system; it supports

index sequential, hash, direct, and set-location access

modes. For example, a record about a city could be accessed

through the state in which it is located (via set), alpha­

betically (index sequential), or through the country in which

it is located (via set). The advantage of the network ap­

proach is high performance, because all of the access paths

can be defined and built (by using pointers) at database

creation time. The disadvantage is that it is a relatively

low-level language and involves the user in storage manage­

ment and detailed record access. It is also limited to

queries that can be satisfied by the predefined access paths

and the approach is therefore inflexible. The storage

structures, generally constructed of pointers to linked

lists, tend to be quite complex.

In contrast, the relational data model approach is a

high-level data retrieval and manipulation language that

shields the user from data formats, access methods, and

storage management. Access paths do not have to be pre­

defined. The lack of predefined physical access paths means

www.manaraa.com

5

that relational databases must be exhaustively searched to

satisfy a query. Since this searching is very slow on con­

ventional computers, the user is often allowed to optionally

specify a prior access path, even in relational systems, to

obtain acceptable performance. But, the benefits of a rela­

tional user interface can be obtained without the drawbacks

of predefined access paths by providing special purpose

associative processing hardware to speed-up table searching.

The hierarchical approach is a subset of the network

approach in that groups of records can be addressed by only

one logical path. A hierarchical database is restricted to

a single owner for each member set; however, a network data­

base can have multiple owners for a member. The hierarchical

approach has the same advantages and disadvantages as the

network approach.

Relational Databases

The considerable attention paid to n-ary relations as a

tool for general database management dates from a 1970 paper

by Codd (7). Codd was the first to give a rigorous defi­

nition for n-ary relations in the database context, and to

emphasize their advantages for data independence and sym­

metry of access when compared to the hierarchical and

network models.

Codd's paper introduced concepts which set the direction

www.manaraa.com

6

for research in relational database management for several

years to come. The paper defined a data sublanguage as a

set of facilities, suitable for embedding in a host pro­

gramming language, which permits the retrieval of various

subsets of data from a data bank. The paper noted that a

standard logical notation, the first order predicate calculus

is appropriate as a data sublanguage for n-ary relations.

The paper also introduced a set of operators (join, pro­

jection, etc.) which were later developed into the well-

known relational algebra. Finally, the paper explored the

properties of redundancy and consistency of relations,

which laid the groundwork for Codd's later theory of normal­

ization.

The term relation may be defined as follows; Given sets

D^yD2,...,D^ (not necessarily distinct), a relation R is a

set of n-tuples each of which has its first element from D^,

second element from , and so on. The sets Dj^ are called

domains. The number n is called the degree of R, and the

number of tuples in R is called its cardinality.

It is customary (though not essential) when discussing

relations to represent a relation as a table in which each

row represents a tuple. In the tabular representation of a

relation, the following properties, which derive from the

definition of a relation, should be observed:

www.manaraa.com

7

1) no two rows are identical;

2) the ordering of the rows is not significant; and

3) the ordering of the columns is significant.

When a relation is represented as a table, its degree is the

number of columns and its cardinality is the number of

rows. The columns of the table are called attributes. The

individual entries in each tuple are called its components.

A column or set of columns whose values uniquely identify

a row of a relation is called a candidate key. When a

relation has more than one candidate key, one of them is

arbitrarily designated as the primary key.

A first normal form relation is defined as a relation

in which each component of each tuple is nondecomposable;

i.e., the component is not a list or a relation. Relations

in first normal form may be used with any of the relational

languages. However, a relation in first normal form may

exhibit three kinds of misbehavior, which are called update

anomalies, insertion anomalies, and deletion anomalies. All

these anomalies arise because more than one concept may be

mixed together in the same tuple. These anomalies can be

avoided by normalizing the relations.

Normalization theory begins with the observation that

certain collections of relations have better properties in an

updating environment than do other collections of relations

containing the same data. The theory then provides a

www.manaraa.com

8

rigorous discipline for the design of relations which have

favorable update properties. The theory is based on a series

of normal forms - first, second, third, and fourth normal

form - which provide successive improvements in the update

properties of a database. An important objective of normaliza­

tion is the elimination of update, insertion, and deletion

anomalies.

Attribute B of relation R is functionally dependent on

attribute A of R if, at every instant of time, each value in

A has no more than one value in B associated with it under

R. Suppose D and E are two distinct subcollections of the

attributes of a relation R and E is functionally dependent

on D. If, in addition, E is not functionally dependent on

any subset of D then E is said to be fully dependent on D in

R. Any attribute rf R which participates in at least one

candidate key of R is called a prime attribute of R. All

other attributes of R are called nonprime attributes.

A relation R is in second normal form if it is in

first normal form and every nonprime attribute of R is fully

dependent on each candidate key of R. The second normal form

is an improvement compared to the first normal form, but

sometimes it also exhibits the anomalies associated with the

first normal form. Therefore, the second normal form is of

little significance except as a stopping-off place on the way

www.manaraa.com

9

to the third normal form.

The third normal form has been defined in a variety of

ways. The original definition was given by Codd (4). The

third normal form is also referred to as the Boyce-Codd

third normal form. Later writers have proposed alternate

definitions which framed the same concept in simpler

terminology.

The third normal form is defined as follows: A relation

R is in third normal form if it is in first normal form and,

for every attribute collection C of R, if any attribute not

in C is functionally dependent on C, then all attributes in

R are functionally dependent on C. This definition is a

formal way of expressing a very simple idea; that each

relation should describe a single "concept", if more than

one "concept" is found in a relation, the relation should be

split into smaller relations.

The design of a database in third normal form depends

on the knowledge of the functional dependencies among the

attributes of the data. This knowledge cannot be discovered

automatically by a system (unless the database is completely

static), but must be furnished by a database designer who

understands the semantics of the information. In fact,

there is no unique third normal form representation for a

given database. Codd briefly addressed the problem of

www.manaraa.com

10

choosing an optimal third normal form from among the various

alternatives (4).

Multivalued dependencies, which are a generalization of

functional dependencies, lead to the fourth normal form for

relational databases. Multivalued dependencies provide a

necessary and sufficient condition for a relation to be de­

composable into two of its projections without loss of infor­

mation. The original relation is guaranteed to be the natural

join of the two projections and the projections taken to­

gether never contain more information than the original rela­

tion. The concept of multivalued dependency was first intro­

duced by Fagin who also defined the fourth normal form (10).

Let U denote the set of all attributes on which a

relation R is defined and let X, Y, and Z be disjoint sets

of attributes of the relation R. Y is said to be multi-

value dependent on X for R(XYZ) where (X,Y,Z) is a partition

of U, if for every XZ-value xz that appears in R, R(xzY) =

R(xY). By definition, a functional dependency is also a

multivalued dependency but the converse is not necessarily

true. Also, a multivalued dependency that holds for R(XYZ)

depends not only on the values of X and Y, but also on the

values of Z. So, a multivalued dependency is said to be

context-sensitive. On the other hand, a functional dependency

is not context-sensitive.

www.manaraa.com

11

The concept of multivalued dependency leads directly to

the fourth normal form. A relation R is in fourth normal

form if, whenever a no.atrivial multivalued dependency, Y is

multivalued dependent on X, holds for R, then so does the

functional dependency, A is functionally dependent on X, for

every column name A of R.

Intuitively all dependencies are the result of keys.

In particular, a fourth normal form relation can have no

nontrivial multivalued dependencies that are not functional

dependencies. If a relation is in the fourth normal form

then it is also in the Boyce-Codd third normal form. A

relation which is not in the fourth normal form can be de­

composed without loss of information into a family of fourth

normal form relations. Decomposing a relation into the

fourth normal form does not necessarily decompose it "as

far as possible". For example, assume that a relation

R(A,B,C,D) has no dependencies other than the functional

dependencies that are the result of A being the key. Then

R is in the fourth normal form although it is possible to

decompose R without loss of information into its projections.

Although every binary relation (a relation with exactly two

column names) is in the Boyce-Codd third normal form, it is

not true that every binary relation is in the fourth normal

form.

Multivalued dependencies significantly extend the

www.manaraa.com

12

understanding of the logical design of relational databases.

Multivalued dependencies provide a necessary and sufficient

condition for a relation to be decomposable into a family of

relations without loss of information. Multivalued de­

pendencies lead to the fourth normal form which is strictly

stronger than the Boyce-Codd third normal form. At the

present time, the fourth normal form is the optimum repre­

sentation, in terms of avoiding the update, insertion, and

deletion anomalies, for relational databases and any relation

in the first normal form can be transformed into a family of

fourth normal form relations without loss of information.

Database Processor
Architecture

Shortly after the invention of the stored program

electronic digital computer in 1946, storage and retrieval

of nonnumeric information became an important application.

With only a few exceptions, the early file access systems

starting in the middle 1950s and the database systems

starting in the late 1960s were mapped onto a conventional

von Neumann computer. Although the desirable way to access

nonnumeric data is by value, the von Neumann architecture

precludes this. Therefore, a number of artificial methods

are used to convert a value into an address. These artificial

methods include sequential, indexed, hashed, and set access

www.manaraa.com

13

methods. In spite of their indirection, these access methods

have successfully met industry needs until the present time.

There has, however, been constant research into many aspects

of file and database systems in the general areas of im-

p oved functionality, improved performance, and improved

availability.

At least one early exception to the use of von Neumann

architecture to retrieve nonnumeric data existed; this was

the Univac File Computer. This system, first delivered in

1954, allowed the addressing of data in mass storage by

value rather than by address. This was done by storing the

value of the desired key in a search register, and then

comparing this value sequentially to values on a drum. With

this capability, records of up to 120 characters could be

stored anywhere on the drum and retrieved by value; no

access method was needed. The importance of this capability

is only now being rediscovered.

The quest for improved functionality has led to database

systems as we know them today—initially using network

structures, and now with growing interest in relational

structures. Initially the performance requirement was met

by brute-force improvements in hardware speed. The one

element that did not change was the architecture. It is

only recently that attention has been focused on the need

for specialized architecture for database management systems.

www.manaraa.com

14

Over a dozen relational database systems have been imple­

mented since E. F. Codd introduced the relational model of

data in a series of pioneering papers between 1970 and 1971.

A number of prototype systems (such as MITs MADAM, GMRs

ROMS, IBMs SEQUEL) were implemented primarily to demonstrate

the feasibility of supporting high-level, nonprocedural

data languages based on the relational algebra or the rela­

tional calculus. At about the same time, a number of other

prototype systems (such as IBM's RM/XRM, GAMMA-0, and Uni­

versity of Toronto's ZETA/MINIZ) were developed for use as

low-level, database access and storage subsystems for

implementing high-level, nonprocedural, relational data

languages. More recently, efforts have been directed toward

implementing more comprehensive systems (such as IBM's

SYSTEM R) which incorporates solutions to various specific

problems which have been identified. A number of systems

which provide natural language interfaces for casual users

(University of Toronto's ZETA/TORUS, University of Illinois

PLANES, and IBMs RENDEZOUS) have also been implemented. A

few cellular associative processors coupled with rotating

storage devices (University of Toronto's RAP, University of

Florida's CASSM, ana University of Utah's RARES) have been

developed as alternatives to the conventional von Neumann

processors for supporting the relational model of data.

Table 1 lists, in approximately chronological order, database

www.manaraa.com

Table 1. Relational database management systems

Name Year Machine Language Status Type Implementors

MADAM 1970 H6000 PL/1 imp/inact inst MIT Project MAC
ROMS 1971 H6000 PL/1 imp/act inst MIT EE Dept.
IS/1(PRTV) 1971 IBM 360,370 PL/1,MP3 imp/act inst IBM UK SC, Peterlee Eng.
ROMS(REGIS) 1972 IBM 360,370 PL/1 imp/act inst GM Research, Warren, Mich.
RD/XRM 1972 IBM 370 assembly imp/act inst IBM Ceunb SC, Cambridge, Mass.
DAMAS 1972 - des/inact inst MIT CE Dept.
GAMMA-0 1973 - des/inact inst IBM SJ
SEQUEL 1974 IBM 370 PL/1 imp/inact inst IBM SJ
RISS 1974 POP 11 Basic-Plus imp/act inst Forest Hospital, Des Plaines, 111
GMIS 1975 IBM 370 PL/1 imp/act inst MITSSM & IBM Camb SC
ZETA/TORUS 1975 IBM 360,370 PL/1 imp/inact inst Univ. Toronto, Canada
OMEGA 1975 PDP 11 des/inact inst Univ. Toronto, Cemada
PLANES 1975 PDP 10 assembly imp/act inst Univ. Illinois, UrbcUia
MAGNUM 1975 PDP 10 BLISS mp/act comm Tymshare, Inc. Cupertino, Calif.
INGRESS/CUPID 1975 PDP 11 C imp/act inst Univ. California, Berkeley
RARES 1975 - des/inact inst Univ. Utah
SQUIRAL 1975 - des/inact inst Univ. Utah
GXRAM 1975 IBM 370 PL/1 imp/act inst IBM SJ
RAP 1976 - imp/act inst Univ. Toronto, Canada
RENDEZVOUS 1976 IBM 370 APL(PL/1) imp/act inst IBM SJ
QUERY BY EXAMPLE 1976 IBM 370 PL/1 imp/act coiran IBM YH
LEECH 1976 - des/act inst Glasgow, England
CAPS 1976 - imp/act inst ICL, Stevenage, England
DEC 1976 - des/act inst Ohio State Univ. Columbus
SYSTEM R 1977 IBM 370 PL/1 imp/act inst IBM SJ
DB85 1977 INTERDATA-85 assembly imp/act inst Univ. Kansas, Lawrence, Kan.
SDD-1 1977 - des/act inst CCA, Cambridge, Mass.
CASSM 1978 - imp/act inst Univ. Florida, Gainesville
DIRECT 1978 PDP 11 C des/act inst Univ. Wisconsin, Madison

www.manaraa.com

16

systems which have been designed or implemented to support the

relational model of data (11). In the taole, the year is when

an implemented system became operational or when the design

of a system which has not been implemented was first re­

ported. The machine is the computer on which a system

has been implemented. RAP, CASSM, RARES, LEECH, CAFS, and

DEC are designs for specialized processors; SDD-1 is a

distributed system under development; and DAMAS, SQUIRAL,

and GAMMA-0 represent proposals for implementing a component

of a system. The language is the programming language in

which a system has been implemented. The status of a system

is designated as either implemented (imp) or only designed

(des), and as either active (act), that is, currently under

development or in use, or inactive (inact). The type of a

system is designated as either institutional (inst), that is,

the system is developed as a research vehicle or for internal

use, or commercial (comm). As is evident from the table,

most of the systems have been software implementations on

existing machines and there are very few specialized proces­

sors. The rest of this section highlights the most note­

worthy features and contributions of some of the systems.

In 1970, MADAM (MacAIMS Data Management System) became

operational as the first relational system. MADAM was imple­

mented on MULTICS utilizing the large, addressable virtual

memory and flexible access control capabilities of MULTICS.

www.manaraa.com

17

The most interesting feature of MADAM is the division of the

storage space into the relation space and the domain space,

and the division of software into a set of procedures

which operate on the relation space and a set of procedures

which operate on the domain space.

A novel feature of IS/l-PRTV (Information System/1 -

Peterlee Relational Test Vehicle) is its microprogrammed

implementation of the data compression/decompression pro­

cedures. The microprogram implementation is reported to have

reduced the CPU overhead to 5 percent. Although it has been

estimated that good data compression techniques may achieve

20 to 80 percent savings in storage space, only PRTV and

INGRES (Interactive Graphics and Retrieval System) have

implemented such techniques. The most important feature of

PRTV is its optimizer. The optimizer transforms an ISBL

(Information System Base Language) expression into an alge­

braically equivalent expression which can be more efficiently

evaluated. Next it attempts to find an optimal set of access

paths for evaluating the transformed expression by considering

the estimated costs of various alternative access paths.

The importance of RDMS/REGIS (Relational Data Management

System/Relational General Information System) lies in the

fact that it is one of the few decision-support systems which

have been developed around relational database systems. A

www.manaraa.com

18

decision-support system is a generalized information system

which provides not only the basic database query and manipu­

lation facilities but also appropriate data anslysis and

plotting capabilities to assist policy makers in reaching

managerial decisions.

In 1974, the SEQUEL system was implemented at the IBM

Research Laboratory, San Jose, California. It was primarily

intended to determine the feasibility of supporting the

SEQUEL data language. Experience with the SEQUEL prototype

and many of the ideas developed for GAMMA-0, a hypothetical

database access and storage subsystem, provided the founda­

tion for the development of SYSTEM R.

In 1976, the QUERY BY EXAMPLE system became operational

at the IBM Thomas J. Watson Laboratory, Yorktown Heights,

New York. It supports the very novel data language called

QUERY BY EXAMPLE. Development of this system, as in the

case of SYSTEM R, significantly benefited from experience

with the SEQUEL prototype implementation. The most note­

worthy feature of the QUERY BY EXAMPLE system is the QUERY

BY EXAMPLE data language it supports. QUERY BY EXAMPLE

has been announced as an IBM Installed User Program. Along

with MAGNUM, it is one of two commercially available rela­

tional systems.

Relational systems which have been implemented on

www.manaraa.com

19

minicomputers include MAGNUM, PLANES, RISS, DB85, and INGRES.

MAGNUM is a commercially available system which was developed

in 1975 by Tymshare Incorporated, Cupertino, California. It

was intended to be used as a database subsystem for a

generalized information system and provides extensive compu­

tational and report generation facilities.

The objective of a natural language interface for a

database system is to allow casual users to interact with

the system without the need to learn artificial data languages

such as SEQUEL and QUERY BY EXAMPLE. The three well-known

natural language database systems which support the rela­

tional model of data are TORUS, PLANES, and RENDEZVOUS.

Specialized Hardware
Systems

CASSM, RAP, and RARES are designs for cellular associa­

tive processors for performing the query, data manipulation,

and data definition activities in the relational context.

CASSM (Context Addressed Segment Sequential Memory) has been

under development since 197 3 at the University of Florida,

to support not only the relational model of data, but also

hierarchical and network models of data. RAP (Relational

Associative Processor) has been developed at the University

of Toronto. RARES (Rotating Associative Relational Store)

was designed at the University of Utah.

www.manaraa.com

20

Basically, the design of these specialized processors

consists of an array of cellular associative processors

which are driven in parallel by a central controller. Each

cellular associative processor (commonly called a cell) is

composed of a microprocessor (or simple logic) and a segment

of a rotating secondary storage device (such as a track of a

drum, disk, CCD, or bubble memory). The processing element

of each cell performs an operation directly on its asso­

ciated memory segment.

In CASSM, data are laid out along the track or loop

of the rotating storage device in variable-length blocks

(8, 18, 20). Each block, which can contain one or more rows

of a relation, is treated as a sequence of 40-bit words.

Thirty-two bits can be used to store either a delimiter, a

column-value pair, a character string, or (to support non­

relational applications) pointers and instructions. The

remaining bits are used as a tag to identify word content,

as mark bits, and for internal processing. CASSM stores a

relation as a two-level tree. The first level corresponds

to the entire relation and is represented by a delimiter

word giving the relation name and the level number. The

relation rows are stored following this delimiter.

A row delimiter preceding each row gives the relation

name and the level number. One word is then used for each

nonnull value in the row. From the word's 32-bit data field.

www.manaraa.com

21

16 bits are used to encode the column name and 16 bits

to encode the value. Since encoding space is needed for

column names but none is wasted for null values, storage

effectiveness depends on the relations null-value ratio.

CASSM uses auxiliary storage to mark rows of relation

and to support its strategy for rewriting a track. When

CASSM simultaneously selects more than one row for output,

it uses an output arbiter to output one of them and marks

the remaining rows for output on subsequent revolutions.

CASSM uses a bit-addressable RAM associated with each track

for this. To rewrite a track, CASSM uses two physical tracks

per logical track. Data is read from the first, analyzed

and written to the second, then rewritten to the first with

all desired modifications.

Like CASSM, RAP lays its data along the tracks of its

storage device, but the similarity ends there; RAP uses a

fixed-length representation for the rows of a relation (14,

17). This length can vary from relation to relation, but

within a relation all rows must use the same amount of

storage. Only one type of relation can be stored on a given

track. Within a track rows are stored one per block, and

the end of each block is marked by a delimiter.

The beginning of a track has a special track marker,

followed by two header blocks. The first block gives the

name of the relation stored on the track, and second gives the

www.manaraa.com

22

column names in the order in which they will appear in the

row representations. The blocks following these header

blocks contain the rows of the relation. The row blocks

contain the concatenated values of the row in the order given

by the second header block. These concatenated values are

preceded by a string of mark bits. All names and values

of the track are encoded as 32, 16, or 8-bit strings, each

preceded by a 2-bit code indicating its length.

Like CASSM, RAP uses an output arbiter to select a

single row for output when two or more are contending. How­

ever, RAP uses the mark bits preceding each row to indicate

which rows must be output on subsequent revolutions. To re­

write a row RAP uses two heads per track, a read head con­

nected by a buffer to a write head. The length of this

buffer determines the maximum size of a block, since it

must hold an entire row. A row is read by the read head,

processed in the buffer, and then rewritten with any necessary

changes back to the track.

RARES uses a very different organization from CASSM

and RAP (13). It lays out relation rows across tracks

(along the radius of a disk) in byte-parallel fashion; the

first byte of a value is placed on a track, the second byte

of the value is placed in the same position on the adjacent

track, and so on. The decision to use a byte-parallel rather

www.manaraa.com

23

than a bit-parallel organization was based on the speed of

the logic available to process a row laid out along a radius,

given the rotation time of the disk. Each set of tracks

used to store a relation in this fashion is called a band.

The number of tracks in the band may vary; the size of the

band is determined by the width of a row. Relations with

wide rows may use more than one radius to store a row. This

format is called an orthogonal layout.

The orthogonal layout means that fewer rows can come

into contention for output. However, some contention is

still possible, so RARES also needs an output arbiter. It

uses a fast memory, called a response store, associated with

each band to mark rows to be output on subsequent device

revolutions. Since RARES was developed only as a query

support facility, storage requirements for row rewriting were

not specified.

A survey of the access methods used in relational data­

base systems does yield a few interesting and definite

trends. First, designers of most of the systems have

elected to support the sequential (i.e., nonkeyed) file

structure along with one or two types of keyed file structures.

In keyed file structures, the storage locations of a group of

tuples are determined by the values of the tuples' key.

Keyed file structures which have been chosen include hashed,

indexed-sequential, and inverted structures, as well as binary

www.manaraa.com

24

or ternary search trees. Multilist, controlled list-length

multilist, and cellular-partitioned structures have never

been used.

The use of keyed file structures presents the database

administrator with yet another difficult problem, namely,

the task of determining which column or combination of columns

should be keyed. The problem of determining an optimal set

of columns to index for an inverted file structure has re­

ceived some theoretical as well as empirical treatment.

However, selection of columns to be keyed, like the design

and evaluation of storage structures and access paths, has

depended on the intuition of the database administrator.

The costly overhead of monitoring and maintaining a suf­

ficient set of statistics on database usage pattern and

internal database characteristics, and the difficulty in

analyzing such a set of statistics may be the main reasons

for the conventional, intuitive approach to this problem.

Within the context of an inverted file structure, the

notion of a clustered index, which has been articulated by

the implementors of SYSTEM R, is worthy of discussion. A

clustered index is an index through which tuples whose

indexed column values are "close" are stored physically

"near" to one another--"near" in the sense that they are

in the pages which reside on the same track or cylinder of a

disk pack. Through a nonclustered index tuples tend to be

www.manaraa.com

25

scattered at random, regardless of the "closeness" of their

indexed column values. The superior performance of a

clustered index has been demonstrated by Blasgen and

Eswaran (2).

Second, the emphasis placed on increased storage space

utilization by the early systems (MADAM/RDMS, RM/XRM, PRTV,

and RISS) has been drastically reduced in the more recent

systems (INGRES and SYSTEM R). The early systems exhibit a

division of storage space into what has been termed relation

space and domain space, whereby each distinct data item in

any relation (stored in the relation space) is represented

by a numerical identifier which references the corresponding

value (stored in the domain space). Although integer values

of data items are stored as they are, this approach may

result in an increased storage space utilization, since

multiple-byte character strings are converted to shorter,

fixed-length, numerical identifiers. However, this approach

potentially results in a deteriorated response time, since

in order to retrieve and output qualifying tuples, access

must be made not only to the relation space, but also to the

corresponding domain space. Because of this drawback, and

also because of the rapid decline in memory costs, this

division of storage space no longer appears fashionable.

In the future, variable-length character strings are

expected to be directly stored in the relations.

www.manaraa.com

26

PRTV and INGRES are the only systems which have imple­

mented some data compression/decompression techniques in

order to increase storage space utilization. In view of the

high processing time overhead demanded by the data compression/

decompression techniques—20 percent of the CPU time in PRTV—

it seems unlikely that future systems will implement such

techniques.

www.manaraa.com

27

OBJECTIVE AND OVERVIEW OF THE RESEARCH

Existing computer architecture and hardware does not

provide efficient nonnumeric computation for applications

such as database management. Most machines are better at

numerical computation by orders of magnitude than non-

numerical computation. There is no standardization at the

machine level of any class of nonnumeric operations; a simple

pattern matching,searching, deleting or retrieving operation

when encoded at the machine level can look quite compli­

cated compared to a reasonably complex arithmetical assign­

ment statement. During the last two decades, significant

improvements have been attained in the size and speed of

primary memory systems, but because of the increase in the

sizes of the data sets in practical applications most of the

information must still reside in the secondary memory

systems. The existing architecture of computers are in­

adequate to handle nonnumeric computations efficiently because

of the need to transfer blocks of information back and forth

from the CPU to secondary memory devices. The users of

machine independent high-level language processors for non-

numeric operations have to depend, therefore, on expensive

and time-consuming software systems.

The approach to overcome this difficulty of repeated

block transfers is to employ parallel processing on different

www.manaraa.com

28

data blocks with associative processing in each block.

Therefore, clearly, the memory system has a vital role

to play in the efficient performance of the computing system

for database management.

This dissertation work involves the analysis and study

of a memory system for a relational database processor.

The relational model of databases seems to be the best

way to support database management at the present time.

The memory system for a processor supporting relational

databases should be capable of retrieving the desired rela­

tion or the tuples of the relation from the database so that

the processor could further manipulate them. The memory

system is analyzed in terms of relational database processing

in a typical university environment; but the same general

principles can be applied to any other situation involving

relational databases. The important criteria used are

explained next.

It is assumed that only one level of indexing is used.

An index on the relation name is maintained in the memory.

Given the name of the relation the index points to the loca­

tion of the relation. The principal advantage of using

relational databases as opposed to the hierarchical and

network approaches is that the method is very suitable for

hardware implementation via associative memories. This

www.manaraa.com

29

advantage is lost if multiple levels of indexing are used.

On the other hand, if no indexing at all is used there is

the likelihood that performance will deteriorate because

a disproportionate amount of time is needed to first locate

the relations. Hence, a good compromise is to use one level

of indexing.

In the study no restriction is placed on the length of

tuples or attributes of a relation; in other words tuples

can be of arbitrary length to satisfy the needs of the

particular data processing function. This is an important

departure from the earlier implementations like CASSM and

RAP (8, 14).

In both CASSM and RAP the value codes are obtained by

encoding the actual value items (12). It has been pointed

out that in practice actual values may have to be used

instead of encoded values, particularly in the light of un­

satisfactory encoding algorithms. To avoid these complica­

tions the proposed memory system does not use encoding

algorithms.

Vacant space assignment and garbage collection are

challenging problems when tuples and attributes have arbitrary

length. An attempt has been made to address them in this

study.

If a rotating associative memory which is disk based is

www.manaraa.com

30

used, the desired relation or the tuples of the relation can

be read out within two rotations of the memory, if properly

organized.

It is assumed that the relations are stored in the memory

system in the fourth normal form (10). It is assumed that

it is the responsibility of the appropriate functional unit

to transform the relations into the fourth normal form before

being stored in the memory system. The fourth normal form

was chosen because it is the optimum form at the present time,

as far as update, insertion and deletion anomalies associated

with unnormalized relations are concerned.

The logic-per-track approach in which content-addressing

is implemented by providing search logic for each track of

the disk memory is used (12). This logic is given a search

operand by the CPU. As the device rotates, the search logic

for each track sequentially compares the tuples scanned by

the read head with the search operand. All tuples matching

the operand are eventually output to the CPU.

The last criterion is that the performance, measured by

the time taken to retrieve data from the memory system,

should be superior to that required by traditional software

implemented relational database management systems.

The principal contribution of this dissertation is the

study and analysis of an associative memory, with content-

addressing capability, for a relational database processor.

www.manaraa.com

31

The logic-per-track approach is taken. The tuples and the

attributes are allowed to have an arbitrary length, no

encoding algorithm is used, and the system utilizes one level

of indexing. The performance of this system is analyzed and

it is demonstrated that it is superior in comparison to

software-based database management computing systems.

www.manaraa.com

32

ARCHITECTURE OF THE MEMORY SYSTEM

An associative memory design is the result of design

choices from a myriad of individual techniques or approaches.

These individual choices involve compromises or trade-offs,

and the choices are not independent of each other. In any

complete system the individual techniques selected tend to

support each other. This aspect of design is generally

highly intuitive; thus, system design is more of an art

than a science. Therefore, when presenting the resulting

system design, the reasons for the selected approach are

explained.

The basic idea behind the memory system architecture is

to devise a large scale, associative storage system by adding

content-addressing hardware to rotating storage devices.

The proposed memory system is a hierarchial system

employing some of the techniques of classical virtual memory

systems.

Figure 1 shows the overall system in terms of block

diagrams. It consists of a relational processor, the

secondary memory, the track buffer, and the main memory.

The relational processor (which is outside the scope

of this dissertation) performs the traditional operations of

relational algebra (or calculus) like Project, Restrict,

Join, etc., on the data which it obtains from the memory

www.manaraa.com

Main
memory
Main

memory
Main

memory
Relational
processor

Track
buffer

Secondary
memory

w
w
*

Figure 1. Block diagram of proposed memory system

www.manaraa.com

33b

system. It may also be responsible for transforming un-

normalized relations into the fourth normal form before

the data are stored in the memory system. The processor can

communicate with the main memory and the track buffer.

The secondary memory is assumed to be a disk storage

system similar to the IBM 3350 or 3370 system. The rela­

tional data in the fourth normal form are stored along the

tracks of the disk memory unit.

Each track of the disk memory unit is provided with

search logic to implement content-addressing capability.

The track buffer acts as a cache for the secondary memory.

The index, which points to the location of the relations

in the secondary memory, resides in the main memory. When

a query reaches the processor, the processor searches the

index in the main memory to find the address of the relation.

This address is then used to locate the relation in the

secondary memory.

Secondary Memory

In this project the secondary memory has been modelled

around a disk storage unit similar to the IBM 3350 or 3370

system, with a movable read/write head. This was chosen

because at the present time, direct access disk storage

units provide advantages of low cost and large capacity

www.manaraa.com

34

which are not matched by CCD or bubble memories. The near-

term technological prospects favor the fixed-head magnetic

disk technology. The technology for read/write heads has

progressed to the use of magnetic films. The day is not

too far off when a batch fabricated transducer can be used

for reading, writing, and sensing track position information.

Bubble technology suffers from a bit rate problem at

present, i.e., the data transfer rate is not greatly better

than a disk. Consider a 512 K-bit bubble chip, a 0.1 MHz

rotating field, and one sensor per chip. One major loop

emptying, which is equivalent to a disk revolution time

becomes about 8 milli-seconds, about half of the 16-2/3

milli-seconds for disk storage systems at 3600 revolutions

per minute. Charge-coupled devices do not have a bit rate

problem, but they are volatile storage media; hence they

are susceptible to power disturbances or temporary outages,

unless defensive measures are taken such as standby

batteries. As the power requirements of charge-coupled

devices diminish with further technological developments,

trickle-charged standby battery power systems may also solve

the CCD volatility problem. In view of the current limita­

tions of CCD and bubble memories it was decided that a disk

storage unit would be assumed for the secondary memory.

At a later date, when bubble memories or other devices become

www.manaraa.com

35

cost-effective and comparable in performance the same general

principles applied in this project can be applied to them.

The data which are in the fourth normal relational form

are formatted as per the format in Figure 2,. This format is

a modified version of the format used by the Symbol 2R

computer to store structures (16). No restriction is

placed on the length of the attributes or the tuples of a

relation, in keeping in line with the criteria for this

project.

These data are then laid along the tracks of the disk

memory unit in chained blocks of 256 bytes or greater.

Each relation is stored along a track. If the storage

capacity provided by a track is insufficient, then the

relation is to be stored on the tracks of the same cylinder.

The reason for using the same cylinder is to eliminate the

seek time delay that would have to be incurred if the

same relation is stored along tracks of different cylinders.

A relation is essentially a matrix representation of the

data, in addition to having other properties that are unique

to relations. The format used to represent the data in this

project is a linear representation of a matrix, i.e., it is

similar to laying the tuples of the relation end-to-end.

Hence, all the inherent properties of tuples and relations

are still preserved. Additional data items like link and

www.manaraa.com

Group mark .
^ ^ ^Item separator

Relation # j Link and location information | Tuple ID

Second level separator
M

Attribute attribute data

Tuple ID I attribute # j attribute data j^)

Memory connection information for extending block to block

I©

Figure 2. Format of data stored in secondary memory

www.manaraa.com

37

location information; memory connection information, etc.,

have been included for ease of processing.

The relation # in the format could be either the name

of the relation itself, which by definition of a relation

is unique for each relation, or a unique number assigned to

each relation via for example a hash code. By the same

token, the tuple ID could be either the primary key or a

unique number. Obviously, it is more advantageous to

eliminate the use of hash codes but the format does provide

this option.

In this format, a relation is enclosed between the

group marks and item separators are used to separate

the data items. Special characters like^^,^p, etc. are

used to indicate the nature of the data that follows the

characters. For example, the character^) indicates that

the data that follows are the relation #. The character

indicates that the link and location information follows

it, the character^T)indicates that the tuple ID follows it,

the character indicates that the attribute # follows

it and the character indicates that the attribute data

follows it. The character is followed by the memory

connection information for extending block to block and the

character indicates that the remaining bytes are blanks

and may be ignored.

www.manaraa.com

38

An extended 8-bit ASCII code is utilized to represent

the data. The standard characters of the ASCII code are

represented with a leading zero attached to their normal

ASCII depiction. The group marks, item separators, and

special characters are represented as follows :

Group marks < 1110 0001

> 1110 0010

Separators 1 1010 0001

A 1010 0010

Special

© characters © 1100 0001

© 1100 0010

© 1100 0011

© 1100 0100

© 1100 0101

0 1100 0110

© 1100 0111

Decoding the left-half byte will indicate the nature

of the character; that is, whether it is a group mark,

separator, special character, or standard ASCII character.

This information may be used to set flags and route the

data to the appropriate logical unit. Thus, from an

implementation viewpoint, this representation is very

attractive.

Blasgen and Eswaran have demonstrated that the speed

www.manaraa.com

39

of evaluation of a query depends on whether the relation is

clustered or unclustered (2). The proposed index, layout

of data along the tracks and, if necessary, along the tracks

of the same cylinder, and the format ensures that the data­

base is indeed clustered. In this case, the main reason

that the relation is clustered is because the data are

laid along the tracks of the sêune cylinder.

To understand the importance of clustering, suppose

that a sequence of M tuples corresponding to an interval of

key values in index I of relation R is to be accessed. If

the relation is clustered, then this sequence can be obtained

b y a c c e s s i n g o n l y (a p p r o x i m a t i n g t o a f i r s t d e g r e e) (M / | R |) D

pages, where D is the number of data pages of relation R and

|R| is the size (number of tuples) of R. If the relation is

unclustered, the M data pages will be accessed. If |R| = 100

tuples/relation, M = 40 tuples, and D = 20 pages; then for a

clustered relation 8 pages will be accessed and 40 pages

for the unclustered case. The difference in performance

is considerable.

Track Buffer

A Track Buffer is the most important unit of the proposed

memory system and is based on the logic-per-active track

approach. It is composed of comparison logic and local

www.manaraa.com

40

storage. The logic-per-active track approach takes ad­

vantage of the fact that rotational storage devices with

an active read head per surface may have all the data of a

relation available for inspection per revolution time.

This particular method has been chosen for study be­

cause a significant performance enhancement compared to

relational database management systems implemented on con­

ventional processors can be expected by using this technique.

This argument is based on the following observations. First,

all track buffers process one or more given operations in

parallel over the entire storage device. Second, the need

to access and maintain auxiliary data structures such

as indexes and pointers necessary for mapping the logical

relations onto their physical counterparts is substantially

reduced. Third, the relational interface optimizer, which

decomposes the highly data-independent and concise rela­

tional query and data manipulation expressions into a

sequence of calls to the database access and storage sub­

system, is likely to be considerably simplified.

The overall architecture of the track buffer is shown

in Figure 3. The most important functions of the track

buffer are searching, storing, and retrieving. Several

comparator elements form the basis of the associative

addressing architecture of the track buffer. The comparators

www.manaraa.com

41

Disk
memory

Read
head

Write
head

Read
head

Write
head

Relational
processor

Read

Track
buffer

Track
buffer

Read
head

I I
I I
I I
I t

I I

I I

Track
buffer

T

Figure 3. Overall architecture of track buffers

www.manaraa.com

42

can independently test the contents of one attribute in the

database against several literals or several attributes

each against different literals. The true or false results

of the comparison tests on a tuple can be combined into a

disjunctive or conjunctive result to determine if the tuple

associatively qualifies for further processing.

An analysis of the requirements for university

administrative data processing indicates that the distribu­

tion of the number of bytes/attribute is bi-modal as shown

in Figure 4. Typically, the length of an attribute ranges

from 1 to 40 bytes. For text-editing and other allied

purposes, a length of 1000 to 5000 bytes/attribute is suffi­

cient. The distribution of the number of attributes/tuple

is shown in Figure 5. These distributions will be used

later for the purpose of analyses as representative ones.

The track buffer comparison logic for the proposed system

is shown in Figure 6. Register 1 holds a constant value which

is the search operand and depends on the query. As data

streams off the read head it is stripped of its group marks

and separators. The data are shifted or parallel loaded

into shift register 2. Registers 1 and 2 are assumed to be

32 to 64 bytes long (as a convenient powers of 2). A

minimum of 32 or 40 bits could be used for the anticipated

attribute lengths.

www.manaraa.com

Probability

m
-L
80 9000

40 " 1000 44)00
log (number of bytes/attribute)

Figure 4. Assumed distribution of number of bytes/attribute

www.manaraa.com

Probability

5

3 4 5

Attributes/tuple

Figure 5. Assumed distribution of number of attributes/tuple

www.manaraa.com

Byte
63 Register 1 Byte 0

E3
Sub-
tracto*

X 8

5
A processor

ÏÏ

.Search operand

from processor

Enable

mask bits

Latch

t
<• '8 ^

k

Register 2
Data from

also parallel
lodd

secondary
memory

U1

Figure 6. Track buffer comparison logic

www.manaraa.com

46

The data from shift register 2 are then transferred

to a 64 byte long latch. Now, the contents of register 1

and the latch are compared. This comparison is done in

parallel over all the 64 bytes. The comparator logic, in

the simplest case, consists of 64 subtracters with a

cumulative zero flip-flop used to compare the equal condi­

tion and a borrow flip-flop to remember the sign of the

result.

In this architecture, the comparison of the data in

the latch with the contents of register 1 and the loading

of data from the storage device into shift register 2 is

done in parallel. This parallel operation enhances the

rate at which data are searched and retrieved and it ensures

that the rate at which comparisons are carried out is faster

than the rate at which data is read from the disk.

As noted previously the comparators need to be at

least 40 bytes long to accommodate the "normal" attribute.

Clearly, a length of 64 bytes, which has been picked, should

satisfy a significant majority of queries. The probability

of requiring a length greater than 40 bytes is assumed to be

low. If a length greater than 64 bytes is required, the

comparison is done piece-meal, 64 bytes at a time. In

this case, the track buffer logic keeps track of the result

of each block of comparison so that the results can be

www.manaraa.com

47

combined to determine if the data qualifies for further

processing. In this case, the time required to select

tuples could be greater than a single revolution time.

If the comparison is satisfactory, the data are output

to the relational processor for further manipulation. If

the data does not fulfill the requirement, the comparison

procedure is repeated on the next set of data.

The mask register facility allows one or more of

the bytes to be involved in the comparison. For exeunple,

certain attributes might be selected from a tuple. By im­

bedding attribute identification and other tuple structural

information in the data stream, the selection can be quickly

made in the key byte.

As another more complex example, several alternative

representations of the attribute data may be acceptable.

For instance, John A. Jones, John Jones, or J. A. Jones

might be alternative acceptable spellings of a name. By

allowing rapid loading of both the search operand and mask

register, alternative spellings could be searched as the

data is processed. The tuple number might also qualify the

tuple for examination.

Although the 32 to 64 byte comparison logic seems a

large amount to allocate per track (800 to 1600 latches or

flip-flops, 256 to 512 bits of ALU) this amount can be

obtained in a single integrated VLSI circuit. The processing

www.manaraa.com

48

speed assumed (% 200 n.sec. per full comparison) would allow

the comparison logic to be shared among tracks. If it were

necessary to reduce logic, the buffer logic length could

be reduced to 16 bits at the expense of processing time.

There may be an output problem associated with the

concurrent processing of data on many tracks. This problem

arises because while the data can be read from the storage

device in parallel, selected tuples can only be received

by the channel sequentially. When tuples are selected

simultaneously on several tracks there may not be sufficient

time to output these bit-serial tuples in sequence to the

channel.

An obvious solution is to use an output arbiter which

allows only one of the simultaneously selected (bit-serial)

tuples to be output to the channel. The remaining selected

tuples are output subsequently by providing additional

temporary storage.

A proposed architectural enhancement is to overlap the

loading and unloading of the track buffers with comparison

processing by pairing track buffer memory segments. The

track buffer segment pair configuration is shown in Figure 7.

A pair of memory segments are used per track. The pair of

segments can be viewed as two memory devices, one being the

primary track buffer and the other being the buffer memory.

Track connections are reversed as needed. By eliminating the

www.manaraa.com

Disk
memory

frit

I/O
control

Track buffer
memory Track buffer

Figure 7. Track buffer segmented local memory

www.manaraa.com

50

delays caused by loading and unloading the throughput

capacity is increased.

The storage associated with the track buffers may in

fact be a single high speed memory of sufficient speed to

handle the throughput. Storage can be realistically ex­

pected to be managed in minimum blocks of 256 bytes. The

memory therefore, is assumed to be 1024 bytes with a

cycle time less than 100 nanoseconds to handle expected

track traffic.

Main Memory

For the proposed system one level of indexing is used

with the index residing in the system main memory. Given the

name of the relation, the function of the index is to supply

the relational processor with the starting address (cylinder

and track) of the relation in the secondary memory so that

the relational processor can initiate the search for the

relation in the secondary memory.

This index is table-driven and its size depends on the

size of the secondary memory. Each relation requires two

entries in the index, the name of the relation and its

starting address. On the other hand, as indicated in Figure

4, attributes are of variable length and typically could be

as long as 40 bytes. Also, each tuple can have anywhere from

www.manaraa.com

51

2 to 6 attributes as shown in Figure 5. Therefore, clearly,

the size of the index is much smaller than the size of the

secondary memory.

As far as speed is concerned, the time taken to search

the index in the main memory should be less than the time

taken by the secondary memory and the track buffer to out­

put dâta to the relational processor to satisfy a query.

Even for serial search in a conventional system, this can be

conveniently done.

Garbage Collection

When variable length tuples are used, a strategy for

garbage collection is needed. A larger tuple clearly cannot

be inserted into a smaller tuple position without reposi­

tioning other data. One alternative is to not do garbage

collection. Whenever the relation is written back to

secondary memory, the relational processor deletes the in­

valid tuples and only the valid tuples are written. In

the event of a crisis point (no more available storage), the

relations are written back to secondary memory after the

relational processor has deleted the invalid tuples. This

is a simple and effective strategy for garbage collection

when attributes and tuples have variable length and can be

easily implemented in hardware. However, because a block

www.manaraa.com

52

structure is assumed with chaining capability, addition

or deletion of a block is simple and straightforward in a

cylinder.

Relational Processor

The relational processor has a number of important

functions to perform so that the memory system as a whole

operates efficiently. The design of the processor itself

is outside the scope of this dissertation but it is assumed

that the processor can do the following operations.

The relational processor is responsible for normalizing

the relations into the fourth normal form and storing this

data in the secondary memory in the format shown in Figure

2. When a query reaches the processor, the processor

searches the index in the main memory and obtains the

starting address of the relation. This starting address is

then supplied to the secondary memory so that the search for

the relation and the tuples can be initiated. The relational

processor provides the track buffer logic with the search

operand.

The processor performs update, insertion, and deletion

of tuples. The tuples output by the track buffer are used

by the processor to perform the standard operations of

relational algebra such as join, project, division, and the

traditional set operations.

www.manaraa.com

53

Track Buffer Micro-operations

The proposed track buffer comparison logic is capable

of performing the following micro-operations set. By using

an appropriate sequence of these micro-operations the

content-addressing capability of the track buffer comparison

logic can be exploited.

1) shr I D/N - shift-right the contents of register I
(I = 1 or 2); either data (D) or null
values (N) are shifted into the left­
most byte-positions.

2) k shr I D/N - same as previous micro-operation except
that the contents are shifted by k
byte-positions.

3) shl I D/N - shift-left the contents of register
I (I = 1 or 2); either data (D) or null
values (N) are shifted into the right­
most byte-positions.

4) k shl I D/N - same as previous micro-operation except
that the contents are shifted by k
byte-positions.

5) REG a (Nj^-N^) •*- data/query — data from the secondary
memory is loaded into N, through N2
of register 2, if a=2; or load query
from the processor into register 1,
if a=l. In the default case, i.e.,
only one byte is to be loaded in,
only Nj^ is specified.

6) LMR (NU-N.) - load mask register so that specified
bytes, Ni through N2, of register 2
can be masked.

7) Enable/disable mask

8) LAT +- REG 2 (NL-N.) - Transfer bytes N, through N2
of register 2 to the latch.

www.manaraa.com

54

9) BUS •*- LAT (N.-N-) - bytes through N2 of the
latch are transferred to the
bus. In the default case only

is specified and byte of
the latch is transferred to the
bus.

10) COMP (1-3) = REG 10 LAT - bytes of register 1,
which are determined by
the mask register, are
compared with the con­
tents of register 1.
The three outputs of the
comparator, 1 through 3
(equal-to, greater-than,
and less-than), and flags
are correspondingly set.

11) LCCAT (a)(3) - load compare count and test. Load the
compare count register with a value
equal to the number of byte locations
where the contents of register 1
matches the contents of the latch.
Based on the test condition (a),
set the corresponding flag (8).

12) FLAG 1,0 - set or clear flag X^.

13) Branch on FLAGS (a,) - branch on combination
of flags (a,)

www.manaraa.com

55

EVALUATION OF THE SYSTEM

In this chapter the proposed memory system is critically

evaluated, under typical conditions, in order to justify

the usefulness of the system in comparison to existing systems.

The performance of the system in terms of processing time is

determined and it is demonstrated that the proposed system

architecture is superior to present software-based systems.

It is also shown that the proposed system appears cost-

effective for relational problems.

The efficient organization and management of large

storage spaces are the central issues in database management

system design. Memory systems hosting databases exist in

a three-dimensional space defined by access time, cost, and

capacity. The successful design achieves an optimum balance

between access time and cost, while the values of these

dimensions always maintain a mutually inverse relationship.

The designer seeks the fastest possible access time at the

lowest possible cost/bit for the entire memory system. The

third dimension, total database storage capacity, is pri­

marily determined by start-up costs and end-user application

requirements.

In this project the secondary memory, where the rela­

tional database is resident, has been modelled around a

disk storage unit similar to the IBM 3350 or 3370. This

www.manaraa.com

56

choice, clearly, meets the general criteria discussed

previously.

Two recent developments in hardware technology show

promise for providing direct support for the relational data­

base model. These developments are the very-large-scale

integration of logic on chips and the development of electronic

rotating memory based on the CCD and magnetic-bubble technology.

The capability of placing sophisticated and specialized logic

can be easily replicated and distributed over data.

The most effective distribution associates logic with

small amounts of data. Logic can be distributed over data

in any of three ways: 1) by integrating both the logic and

the data on a single VLSI chip, 2) by associating the logic

with the read/write mechanism of a track or loop of rotating

memory, and 3) by configuring a distributed microprocessor

based architecture.

The first approach holds little promise, at present,

for database applications, since it is too expensive for the

large amounts of data that are typically involved. The

second and third approaches, however, are worth investi­

gating. In this project, the second technique has been

used, rather than the third, because it is cost-effective

for a class of problems. If more functions were to be

implemented, then the third approach using microprocessors

can be utilized.

www.manaraa.com

57

By associating the selection logic with the read/write

mechanism of the memory, the system has the ability to select

at the device level. This has two major consequences. First,

since each track or group of tracks has its own associated

logic, the search and retrieval operations can be performed

over all trrcks in a cylinder in parallel provided the

storage devices are appropriately constructed. Therefore,

the system has a high degree of parallelism incorporated into

it. Because of this inherent parallelism, the need for

indices has been minimized. The system uses only one index

which provides the cylinder number for a given relation.

Thus, the maintenance of such access structures is also mini­

mized. A second advantage of this approach is that only

data meeting the search criteria and selected by the logic

are output to the relational processor for further processing.

This reduces the data transfer costs and increases the ef­

fective utilization of the relational processor. By in­

creasing the utilization of the relational processor the

throughput of the entire system is enhanced.

There are two approaches to utilizing content-addressable

hardware to achieve very high throughput; that is to complete

the content-search retrieval and update the database in the

shortest possible time by making use of several content-

addressing processors.

www.manaraa.com

58

The multiple content addressability and single data

stream (MCSD) approach merges the data from all the tracks

into a single data strecun that is content addressed by

multiple processors using different conjunctions. The

single content addressability and multiple data streams

(SCMD) approach processes multiple data streams, one from

each track, in parallel. Each processor uses the same con­

junction.

In the MCSD approach, one content addressable processor

handles the first conjunction while the second processor

handles the second conjunction. Typically the i'th processor

handles the i'th conjunction. The approach assigns each

processor a different conjunction. At any instant, all the

processors examine the same data bits against their own

conjunction. Thus, at that instant, the entire parameter

of the search-retrieve instruction is applied to those data

bits. In order to make the same data bits available to

every content addressable processor, the system replicates

the data bits for each processor. Otherwise, contention

over the input bus for the same data bits will be the bottle­

neck. At the end of a disk revolution, an entire cylinder

of records are replicated and content addressed.

In the SCMD approach each content addressable processor

uses the same conjunction and each processor examines data

www.manaraa.com

59

from a different track; thus processor #2 will content

address the data from the second track in the cylinder.

In the SCMD approach, each content addressable processor

examines a different data stream but may be capable of

using only a part of the parameter of the search-retrieve

instruction, namely a conjunction. To complete the entire

parameter a number of passes of the data may be necessary.

The chief advantage of the MCSD approach is that it

can process a complete parameter in one disk revolution if

all the relations are on a single cylinder. Merging multiple

data streams requires a high bandwidth; the number of tracks

in a cylinder may thus have to be limited. Moreover, if

the search parameter contains only 1 or 2 conjunctions,

then a few processors are very busy while most are idle.

Finally, since all processors are working on the same

parameter, there must be some communication network among

them, which adds complexity to the overall system. This

approach is very inflexible and severely restricts the

possibility of changing the number of disks in a cylinder.

This is a serious limitation of the technique, since in a

database management system the number of disks in a cylinder

may have to be varied to reflect the changing needs for

storage capacity.

The major advantage of the SCMD approach comes from

associating a content addressing processor with each track.

www.manaraa.com

60

This makes the design essentially independent of the number

of tracks per cylinder and encourages a large cylinder size

with a great number of tracks. Since each processor func­

tions independently of the other processors, no intercon­

nection logic between the processors is needed. The approach

is very flexible and the number of disks used can be changed

if necessary. In addition, the processing of a simple

parameter using only 1 or 2 conjunctions is evenly spread

among the different processors. The only disadvantage of

the SCMD approach is that a parameter of multiple conjunc­

tions may require multiple disk revolutions for processing.

The memory system in this project uses the SCMD approach.

Each track of the memory has its own associated track buffer

comparison logic which is used for content addressable

processing. All track buffers receive the same query from

the relational processor and each track buffer examines

data from a different track; that is, each content addressable

track buffer uses the same search criteria but examines a

different data stream. This approach is very flexible and

the number of tracks in a cylinder can be changed, to reflect

the changing needs for storage capacity, without major

changes in the architecture. Besides, no interconnection

logic is required between the track buffers.

A large database, such as the one needed for a university

administrative data processing, must reside on many cylinders

www.manaraa.com

61

or even on many disk drives. The management and content

addressing of an entire cylinder space pose a problem be­

cause a user request may cause the entire cylinder space

to be content addressed. In such a case the cylinders

must be content addressed in sequence, each cylinder

requiring an access-arm movement. To avoid system per­

formance degradation, the address space must be reduced to

the few cylinders that will satisfy the search-retrieve

instruction.

The information used to reduce the address space may be

stored in a directory in the form of indices. In a con­

ventional software-based system, the directory can be as

much as one-tenth the size of the database. The architecture

in this project uses large, cylinder-sized, content-

addressable blocks. An address is only a cylinder number

rather than a combination of a cylinder number, track number,

sector number, and the name of the relation. As shown in

Figure 4, attributes are of variable length and could be as

long as 40 bytes. Also, each tuple could have 2 to 6

attributes as indicated in Figure 5. Therefore, clearly,

the size of the index is much smaller than the size of

the database and can be reduced to as little as one percent

of the database. The degradation in performance in the

absence of an index and the relatively small size of the

index when compared to the database justify the use of an

www.manaraa.com

62

index to minimize access to the cylinder space. The rela­

tional processor can further upgrade the performance. The

relational processor can take a Boolean expression of

predicates as the parameter of a search-retrieve instruction

about a relation and by searching the stored index, generate

a list of cylinder numbers to be content addressed.

In any data representation, it is very desirable to

close the gap between the physical structure of the data and

the information structure of the data as seen by the user.

This will avoid multilevel data mapping which reduces system

efficiency and data reliability. The relational data model

does an excellent job of closing this gap. It is therefore

necessary that in a relational database machine the storage

representation used be as close to the relational database

model as possible so that none of the properties of the

relational model are compromised. The format used to repre­

sent the data in this project is a linear representation of

a relation; it is similar to laying the tuples of the

relation end-to-end. Therefore, all the inherent properties

of tuples and relations are still preserved. By storing

the actual values instead of encoded values the problem of

encoding and decoding has been avoided which have been

problems in previous relational database systems (12).

The additional data items in the format are for ease of

www.manaraa.com

63

processing and do not have any effect on the properties of

relations. Because of the presence of delimiters either

the entire tuple or s specified domains of qualified tuples

may be read out by the relational processor. This signifi­

cantly reduces the data to be transmitted across the channel

within a given time interval. Such a reduction will, on

the average, leave the channel with spare capacity. This

spare capacity is exploited by processing data from many

tracks simultaneously. In this way, the transmission rate

of selected data is increased.

The system has the capability of storing the data

structures very close to the relational data model. The

ordering of the tuples is, therefore, not significant. This,

in turn reduces the complexity of the logic needed for up­

date, insertion, and deletion which are the three basic

operations in a database system. For updating, the updated

tuple can be written into the memory. A new tuple can be

inserted as the last tuple in the relation since the order

of the tuples is immaterial. A tuple can be deleted without

effecting the other tuples in the relation. The same can

be done for updating, inserting, and deleting relations.

When a relation is updated; either some or all of the tuples

are updated, or new tuples are inserted in the relation. No

change is needed in the index when a relation is updated.

www.manaraa.com

64

If a relation is inserted into the database, it can be in­

serted anywhere in the memory where there is sufficient

storage capacity for the relation. A relation can be in­

serted anywhere because the order of the relations is

immaterial. An entry corresponding to the relation is

needed in the index. Since the order of the entries in

the index is insignificant, the entry could be anywhere in

the index. When a relation is deleted from the database

the corresponding entry in the index is also deleted. Since

relations and their entries in the index are unordered,

this deletion has no impact on the remaining database. Hence,

it is seen that the system is very flexible for update,

insertion, and deletion of tuples and relations.

An additional, desirable feature of the format is that

no constraint is placed on the length of the attributes,

the number of attributes in a relation, and the number of

tuples in a relation. Hence, the format used is very

versatile.

The performance of the system depends on the following

parameters :

1) clustering of the data;

2) parallelism in track buffers;

3) processing a cylinder at a time; and

4) minimum amount of indexing.

Each of these parameters is now examined individually and

www.manaraa.com

65

the effect on performance enhancement analyzed.

As shown by Blasgen and Eswaran, physical clustering

of logically adjacent items is a critical performance param­

eter in database mangement systems (2). Clustering of

logically adjacent data items drastically reduces the

cost of accesses, to the storage unit, which is a critical

performance parameter in any system. In a clustered data­

base system, tuples which are logically adjacent or close

are stored physically near to one another; near in the

sense that they reside on the same tracks or cylinders of

a disk drive. Unclustered databases tend to be scattered

at random regardless of the closeness or logical adjacency

of the data items.

A frequent need in database management systems is the

ability to access logically adjacent data items. It is

therefore crucial to have a clustered database so that

the cost of access to the storage is minimized. Clearly,

the speed of evaluation of a query depends on whether the

database is clustered or unclustered.

In the proposed memory system, the data in a relation

are stored along the tracks of the disk. If the storage

provided by a track is insufficient for a relation, the rela­

tion is stored along the tracks of the same cylinder. The

format used for storing the data allows for link and location

www.manaraa.com

66

information to be included for extending from block to block.

Now, if data along all tracks of the same cylinder are

processed in parallel simultaneously, the data are accessed

at most once and hence the data are essentially clustered.

As a consequence of this clustering, the seek time involved

in moving the read-head from track to track is reduced to

the bare minimum of one seek time. Since large relations

are stored along the tracks of the same cylinder, in one

seek time the read heads are positioned properly to access

the entire relation. The rotational delay is also sub­

stantially decreased because the entire data stored along

one track can be examined in one revolution. At the same

time, since all tracks of a given cylinder are searched in

parallel, the entire relation can be content addressed in

the time taken for one revolution of the disk memory. As

stated previously, in an university administrative database

system it is expected that in a vast majority of cases, the

storage provided by one cylinder is adequate for storing a

relation. Clearly, because of the proposed layout of the

data the maximum delay to access an entire relation stored

on one cylinder is equal to one seek time plus one rotational

delay time.

If a relation is too large for one track and is stored

along tracks of different cylinders the performance of the

www.manaraa.com

67

system will degrade considerably as is now shown. Using an

IBM 3350 disk-drive system with movable read/write heads,

25 milli-seconds will be needed for the seek time and there

will be a further 8.4 milli-seconds of rotational delay.

This 33.4 milli-seconds of delay will be required each time

tracks in different cylinders have to be searched. The IBM

3350 has a data transfer rate of 1200 bytes oer milli-second

and comoared to this data transfer rate the above delay is

a considerable penalty to be incurred because the database

is unclustered. A clustered database will reduce this delay

to the minimum possible.

FundamerLcd to the concept of a database computer is

the accessing of data on the basis of value other than the

position. In a parallel associative memory, a parallel

search is performed over a few thousand bytes in a time

of the order of micro-seconds. In a serial associative

memory, a serial storage unit like a disk is searched

serially to find data meeting the search criteria. Typically

it can search megabytes in tens of milli-seconds. Unlike

the parallel associative memory, the serial associative

memory is not limited to equality searches and hence the

serial associative memory is suited for a wider range of

applications. The memory system in this project is a serial

associative memory.

www.manaraa.com

68

The system derives its strength primarily because of

two capabilities; content addressing and parallelism. When

data are resident in the associative memory, the system

can access the data by content and can perform search

operations in parallel, such as exact match, greater-than,

less-than, maximum, minimum, and between limits. And

search is fundamental to such operations as retrieval of

data, updating data already in the database, sorting, and

merging. The system architecture has a high degree of

parallelism for performance enhancement, as discussed

presently. Parallel processing, also, reduces the software

indices required for the system to operate.

By associating the track buffer comparison logic with

each track in a cylinder of the disk memory all tracks are

searched in parallel. As indicated in Figure 6, shift

register 1 contains the search operand which is the query.

Data from the memory are shifted in to shift register 2.

Data from shift register 2 are then transferred to a 64

byte long latch and compared with the contents of shift

register 1. For an exact match, between the data and the

query, a match is needed between every byte of the data

and the query. Therefore, by using the result of the

comparison in every byte the logic can determine an exact

match. For greater-than and less-than conditions, the

logic can scan the result of the comparison, starting from

www.manaraa.com

69

the most significant byte and proceeding towards the least

significant byte. The highest order byte location where a

match does not occur will indicate the relative magnitude

of the data with respect to the query. At this location,

if the data are less than the query, then the entire data

are less than the query. Similarly, if at this location

the data are greater than the query then the entire data are

greater than the query. Thus, the track buffer comparison

logic can check for the three most common conditions of

equal-to, greater-than, and less-than. Because of the

use of the ASCII representation for alphabetic data and

query, the comparison logic can be used for alpha-numeric

data and query.

In the track buffer comparison logic, the subtracters

are the units which require the largest amount of time to

complete their operation. It is therefore advantageous to

perform some other operation while the comparison is being

done. In the proposed memory system, while the comparison

is being done, the next set of data from the memory are

shifted into the track buffer memory. If the query for the

next set of data is the same as for the previous set of

data, the new query need not be loaded in. If the query

is different, then the new query is loaded into register 1

during the same time that the data are shifted into shift

www.manaraa.com

70

register 2. Since the length of the data and the query are

the same, by the time the data are shifted in the query

can be easily loaded in parallel. Thus, the loading of the

data and the query, and the search operations proceed in

parallel and this is another feature of the parallelism in

the system.

As a result of moving selection logic closer to the

data on rotating storage only selected tuples of the relation

need be output for further processing. However, if many

tuples from different tracks of the cylinder have been

selected, two or more of them may contend for the output

channel. In such cases, only one tuple can be output and

the others must wait for subsequent free time. Using an

output arbiter, only one of the simultaneously selected

tuples can be output to the channel; the remaining tuples

being output later from the track memory may restrict the

output rate for selected tuples.

By using a pair of track memory segments as shown in

Figure 7, for each track of the cylinder; the loading of

data to be searched from the disk memory and the unloading

of selected data to the relational processor is overlapped

with comparison processing. In this architecture, logically,

one track buffer functions as the primary track memory seg­

ment while the other is used as the loading memory segment.

www.manaraa.com

71

The system cannot be delayed by the loading and the un­

loading of the data as long as the total processing time for

the subset of the data being processed is longer than the

time to unload selected tuples and to load the next subset

of data to be processed. This architectural enhancement

further increases the throughput capacity of the system.

An approximate analysis of the system may be done as

follows; a more rigorous analysis of the performance ef­

fectiveness is done later in the chapter. In the IBM 3350

disk drive system, there are 19 tracks per cylinder and the

proposed system would process an entire cylinder in one

revolution. But conventional disk systems process one track

at a time; therefore, a performance improvement factor of

19 can be expected over conventional disk systems. Because

of the minimum amount of software and indexing, an improve­

ment in performance by at least a factor of 1 to 2 can be

expected. Since comparison processing takes place in

parallel with shifting in of the data from the memory, the

performance is enhanced by a factor greater than 1. Further

a pair of track memory segments are used for each track of

the memory; this gives rise to additional improvement. Thus

the system is likely to have a hardware processing power

which is at least 19 to 152 times that of conventional

software-based systems with the same disk system.

www.manaraa.com

72

Performance Effectiveness

In order to demonstrate the performance effectiveness

of the system, the performance of the system is compared

to that of an IBM System 370, which is a general-purpose

system that can be readily tailored for a variety of applica­

tions. If an IBM System 370 is used as a relational

database management system then it would be software-based.

The IBM 3350 disk drive system has a data transfer

rate of 1.2 million bytes per second. In the analysis which

follows, a data trasnfer rate of 2.5 million bytes per

second is used, as a worst case value, which will account

for improvements in technology in the next few years. At

this data transfer rate the memory will transfer 1 byte

every 400 nano-seconds and hence will take 25.6 micro­

seconds to transfer 64 bytes of data.

In the analysis standard low power Schottky circuits

are used for the track buffer logic for analysis purposes.

The SN74LS164 which is an 8-bit parallel-out serial shift

register can be used for shift registers in the track

buffer. It has a maximum guaranteed clock frequency of

25 MHz. If a 20 MHz clock is used, which is less than the

maximum guaranteed frequency, the SN74LS164 can shift in

64 bytes of data in 25.6 micro-seconds. Hence, the data

can be shifted into the shift registers in the track buffer

www.manaraa.com

73

at the same rate as they are read from the memory. In

this 25.6 micro-seconds, the data should be transferred

to the latch, compared and output to the relational

processor scanning every possible position of the operand.

In the worst case, the SN74LS164 requires 32 nano­

seconds for propagation delay. With a 20 MHz clock, this

leaves 18 nano-seconds for set-up on the inputs to the

latch. The SN74LS273, which is an octal D-type flip-flop,

can be used for the latch. These flip-flops have a maximum

guaranteed clock frequency of 30 MHz which is less than the

20 MHz frequency used for the shift registers. Under worst

case conditions, the SN74LS273 will need 27 nano-seconds

for propagation delay. The SN74LS85, which is a 4-bit

magnitude comparator and has outputs for the three condi­

tions of greater-than, equal-to, and less-than, could be

used to compare the data with respect to the query. For

worst case conditions, the SN74LS85 requires 45 nano­

seconds for propagation delay. Thus, even under worst

case conditions only (27+45 =) 72 nano-seconds are needed

to transfer the data to the latch and perform the com­

parison processing. This 72 nano-seconds is much less than

the 25.6 micro-seconds that the memory takes to transfer

the next set of data to the track buffers. That is, the

search-retrieve operation can be performed on the data at

www.manaraa.com

74

the same rate at which the data are read from the memory

with modest speed logic.

In order to determine the performance of a software-

based conventional system, for comparative analysis, the

following assembly language program was coded for execu­

tion on the IBM System 370/68. The program searches 64

bytes long subsets of the data and determines whether

the data are equal-to, greater-than, or less-than the

query. This is similar to the operation of the track

buffer comparison logic in the proposed memory system.

The program has 26 instructions which need to be

executed each time a search-retrieve operation is per­

formed on the data. The IBM System 370/68 can execute

approximately 2 million instructions per second. Therefore,

the 26 instructions would require 13 micro-seconds to

process the data. Since the time required for processing

the data is substantial, there cannot be a continuous

transfer of data from the memory to the processor without

contention; the processor can keep up with the data transfer

rate and the data can be processed at the same rate at

which it comes off the memory in this simple case. However,

if a 64 byte match were to be made at every byte location,

the machine would be a factor of 32 too slow ((13x64)/25.6 =

32). In contrast, the memory system in this project can

www.manaraa.com

75

STMT SOURCE STATEMENT

1 PRINT NOGEN
2 ACHECK SETUPR

17 OPEN (INDATA,(INPUT),RESULT,(OUTPUT))
25 PUT RESULT,HEADING
30 READ GET INDATA,BUF
35 MVC DATA(64),BUF
36 GET INDATA,BUF
41 MVC QUERY(32),BUF
42 SR 3,3
43 SR 4,4
44 LA 5,DATA
45 LA 6,QUERY
46 COMDAT CLI 0(5),C '
47 BE COMQUE
48 LA 3,1(3)
49 LA 5,1(5)
50 B COMDAT
51 COMQUE CLI 0(6),C '
52 BE GETLEN
53 LA 4,1(4)
54 LA 6,1(6)
55 B COMQUE
56 GETLEN CR 3,4
57 BC B'OlOO',NOTFOUND
58 S 4,=F'l'
59 LA 5,DATA
60 COMPARE EX 4,INST
61 BE FOUND
62 LA 5,1(5)
63 S 3,=F'l'
64 CR 3,4
65 BE NOTFOUND
66 B COMPARE
67 NOTFOUND MVC STATUS,NO
68 PUT RESULT,DETAIL
73 B READ
74 FOUND MVC STATUS,YES
75 PUT RESULT,DETAIL
80 B READ
81 EOF CLOSE (INDATA,,RESULT)
89 RETURNR
99 INDATA DCB DSORG=PS,MACRF=GM,DDNAME=DATAFL,RECFM=FB,

LRECL=80,EODAD=EOF
153 RESULT DCB DSORG=PS,MACRF=PM,DDNAME=RESULT,RECFM=FBA

LRECL=133

www.manaraa.com

76

207 INST CLC QUERY(O) ,0(5)
208 YES DC CL3'YES'
209 NO DC CL3' NO'
210 BUF DS CL80
211 HEADING DS 0CL133
212 DC C '
213 DC CL20' '
214 DC CL4'DATA'
215 DC CL60' •
216 DC CL5'QUERY'
217 DC CL30' •
218 DC CL5'MATCH'
219 DC CL8' '
220 DETAIL DS 0CL133
221 DC C '
222 DC CL20' '
223 DATA DS CL64
224 QUERY DS CL32
225 STATUS DS CL3
226 DC CL13' '
227 END ACHECK
228 =F'l'

www.manaraa.com

77

process the data at a rate which is more than the data

transfer rate of the storage system even for the most

stringent case. Clearly, for the basic operations that

are needed in a relational database management system, the

performance of the proposed memory system is far superior

when compared to conventional software-based systems.

Cost Effectiveness

The cost effectiveness of the proposed memory system

is now demonstrated. The system uses 2 registers which are

each 32 to 64 bytes long. These registers would require

64 to 128 SN74LS164 chips if they were constructed of MSI

devices. The 32 to 64 bytes long latch needs 32 to 64

SN74LS273 chips and the 32 to 64 comparators require 64

to 128 SN74LS85 chips. A small additional number of SSI

chips would be used to combine the outputs of the com­

parators and for other purposes.

In a real system, a designer would most assuredly turn

to LSI or VLSI chips. However, if one assumed an average

board cost of $10/IC for the MSI design and an end user

multiplier of 6 for end user price, each 32 byte track

buffer would cost:

$10 X (64 + 32 + 32 + 64 + 4) X 6 = $12,000.

A system of 19 track buffers for a single disk drive system

would then have an end user price of $12,000 x 19 = $228,000

www.manaraa.com

78

or $448,000 for a two disk drive system.

This amount would be about 10% to 20% of the assumed

IBM 370 system; this would not be an unreasonable amount

for a system primarily dedicated to relational database

operation. However, with LSI or VLSI the track buffer

cost could be expected to be reduced by 1 or 2 orders

of magnitude to very attractive values.

The IBM System 370 CPU provides registers which in­

clude the current program-status word, the general registers,

the floating-point registers, and the control registers.

The 16 general registers are each 4 bytes long. The four

floating-point registers are 8 bytes long each. The CPU

has provisions for 16 control registers which are each 4

bytes long. In addition, the CPU contains the sequencing

and processing facilities for instruction execution, inter­

ruption action, timing functions, initial program loading,

and other machine-related functions. Most of the hard­

ware cost is in the large main memory however. Clearly,

the proposed memory system is cost effective when compared

with conventional software-based system if the main job is

management of a relational database.

www.manaraa.com

79

CONCLUSIONS

In order to be considered a true relational system,

a database system must posses at least the following

attributes (3).

1) All information is represented by data values.

No essential information is contained in invisible connec­

tions among records.

2) At the user interface, no particular access path

is preferred over any other.

3) The user interface is independent of the means by

which data are physically stored.

The proposed memory system in this project satisfies all of

the above criteria. In addition, the architecture has a

number of attractive features which make the system both

performance and cost effective. Even though the system

was modelled to meet the needs of university administrative

data processing system, the results are general in that

they could be used for other database management systems.

The format used for the representation of the data

is very similar to the normalized relational data model.

Thus, the update, insertion, and deletion anomalies of

unnormalized relations are avoided. By imbedding structure

information in the data representation the processing of

the data has been simplified. Because of the presence of

www.manaraa.com

80

the separators either an entire relation, tuples of a rela­

tion, or the attributes of a tuple satisfying the search cri­

teria can be output by the memory system to the processor.

The database is clustered and the performance of the system

is significantly improved due to this clustering. A minimum

amount of indexing is used and the index has one entry for

each relation in the database.

The system derives its processing power from parallel

processing and content addressing. The logic-per-track

approach is used and each track in a cylinder has its own

associated logic for content addressing. A cylinder of

tracks is processed in parallel and in the track buffer

comparison processing of the data with respect to the query

proceeds in parallel with the loading of the next set of data.

Due to the content addressing capability of the system, only

selected data meeting the search criteria are output to the

relational processor. This increases the effective utiliza­

tion of the processor and the overall throughput capacity of

the system.

Hardware techniques for data manipulation operations

are desirable, feasible, and available. The proposed system

can support simple retrieval operations and output data which

are greater-than, equal-to, or less-than the query. Due to the

ability to mask specified attributes of selected tuples, the

projection operation can be done. The proposed system can

www.manaraa.com

81

easily handle the update, insertion, and deletion of tuples

and relations in the database. The lengths of the attributes

and the tuples is unconstrained. In addition, the number of

tuples in a relation and the number of relations in the

database is unrestricted. The number of tracks in a cylinder

and the number of disk drives can be changed without any

modifications of the architecture. The proposed system is

therefore very versatile.

A simple analysis of the performance of the proposed

system indicates that for the basic operations that are

needed in a relational database management system, the

performance of the proposed memory system is far superior

to conventional software-based systems. The proposed memory

system is also cost effective in comparison to software-

based systems if the main job is the management of a rela­

tional database.

The principal contribution of this dissertation is the

study and analysis of an associative memory system for a re­

lational database management system, with content addressing

capability. The proposed system uses a single level of in­

dexing; an index on the name of the relation is required.

The suggested format for the representation of the data is a

modified version of the format used by the Symbol 2R computer

to store structures. The format has structure information

www.manaraa.com

82

imbedded in it to simplify the processing. The logic-per-

track approach is used and the memory system requires one

relational processor. An architecture for the search

logic has been proposed which enables the system to be per­

formance and cost effective in comparison to traditional

software-based relational database management systems.

It anticipates the effective use of LSI and VLSI circuits.

Possible Further Investigation

There are several topics for additional investigation

related to this work. The traditional set operations of

union, intersection, difference, and extended Cartesian

product and the special relational operations of join, and

division can be hardware implemented. This would provide

a complete set of operations for the manipulation of the

data. It would be interesting to investigate the feasi­

bility of a distributed microprocessor based configuration

where a microprocessor and associated logic is used to

process the data from each track in a cylinder. As a

logical extension of the single-instruction multiple-data

stream associative processor, it is worth examining a

multiple-instruction multiple-data streaun architecture for

supporting an interactive relational database management

system.

www.manaraa.com

83

BIBLIOGRAPHY

1. Babb, E. "Implementing a relational database by means
of specialized hardware." ACM Trans. Database Syst.
4, No. 1 (March 1979):l-29.

2. Blasgen, M. V I . , and Eswaran, K. P. "Storage and access
in relational data bases." IBM Syst. J. 16, No. 4
(1977) :363-377.

3. Chamberlin, D. D. "Relational data-base management
systems." Computing Surveys 8, No. 1 (March 1976);
43-66.

4. Codd, E. F. "Further normalization of the data base
relational model." Data Base Systems, Courant
Computer Symposia Series, Vol. 6. Englewood Cliffs,
N.J.; Prentice-Hall, 1972.

5. Codd, E. F. "Recent investigations in relational
data base systems." Information Processing 74.
Amsterdam, The Netherlands; North-Holland Publishing
Co., 1974.

6. Codd, E. F. "Relational completeness of data base
sublanguages." Data Base Systems, Courant Computer
Symposia Series, Vol. 6. Englewood Cliffs, N.J.:
Prentice-Hall, 1972.

7. Codd, E. F. "A relational model of data for large
shared data banks." Commun. ACM 13, No. 6 (June
1970);377-387.

8. Copeland, G. P.; Lipovski, G. J.; and Su, S. Y. W.
"The architecture of CASSM: a cellular system for non-
numeric processing." Proc. First Annual Symposium on
Computer Architecture. Long Beach, Ca.; IEEE
Computer Society, 1973.

9. Fadous, R. Y. "Decomposition of a relation into fourth
normal forms." Proc. Third COMPSAC Conference. Long
Beach, Ca.;IEEE Computer Society, 1979.

10. Fagin, R. "Multivalued dependencies and a new normal
form for relational databases." ACM Trans. Database
Syst. 2, No. 3 (Sept. 1977);262-278.

www.manaraa.com

84

11. Kim, W. "Relational database systems." Computing
Surveys 11, No. 3 (Sept. 1979):185-211.

12. Langdon, G. G., Jr. "A note on associative processors
for data management." ACM Trans. Database Syst. 3,
No. 2 (June 1978);148-158.

13. Lin, C. S.; Smith, D. C. P.; and Smith, J. M. "The
design of a rotating associative memory for relational
data base applications." ACM Trans. Database Syst.
1, No. 1 (March 1976):53-65.

14. Ozkarahan, E. A.; Schuster, S. A.; and Smith, K. C.
"RAP: An associative processor for data base manage­
ment." Proc. AFIPS National Computer Conference,
Vol. 44. Montvale, N.J.;AFIPS Press, 1975.

15. Ozkarahan, E. A., and Sevick, K. C. "Analysis of
architectural features for enhancing the performance
of a database machine." ACM Trans. Database Syst.
2, No. 4 (December 1977);297-316.

16. Richards, H., Jr. SYMBOL 2R Programming language
reference manual. Ames, la.: Cyclone Computer
Laboratory, Iowa State University, 1971.

17. Schuster, S. A.; Nguyen, H. G.; Ozkarahan, E. A.;
and Smith, K. C. "RAP.2 - An associative processor
for databases and its applications." IEEE Trans.
Computers C-28, No. 6 (June 1979):446-458.

18. Schuster, S. A.; Ozkarahan, E. A.; and Smith, K. C.
"A virtual memory system for a relational associative
processor." Proc. AFIPS National Computer Conference,
Vol. 45. Montvale, N.J.: AFIPS Press, 1976.

19. Su, S. Y. W. and Lipovski, G. J. "CASSM: A cellular
system for very large data bases." Proc. International
Conference on Very Large Data Bases. New York, N.Y.:
ACM, 1975.

20. Su, S. Y. W.; Nguyen, L. H.; Emam, A.; and Lipovski,
G. J. "The architectural features and implementation
techniques of the multicell CASSM." IEEE Trans.
Computers C-28, No. 6 (June 1979):430-445.

www.manaraa.com

85

ACKNOWLEDGMENTS

Dr. Arthur V. Pohm provided invaluable suggestions

and criticisms. His patient encouragement and guidance

is appreciated.

Thanks to Drs. C. S. Cornstock, H. C. Brearley, R. J.

Lambert, and T. A. Smay for their counselling at various

stages.

The financial support from the Affiliates Program in

Electronics and the Department of Electrical Engineering

is gratefully acknowledged.

	1981
	Memory system for a relational database processor
	Vijaya Kumar Konangi
	Recommended Citation

	tmp.1414696855.pdf.maEev

