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Micrdnlms 

International 
.•illDN ANNAKHUI^ Ml U-ilOh 



www.manaraa.com

8209139 

Konangi, Vyayi Kumar 

MEMORY SYSTEM FOR A RELATIONAL DATABASE PROCESSOR 

loMMX State University PH.D. 1981 

University 
Microfilms 

Interndtionsi 300 N. Road. Ann Arbor, Ml 48106 



www.manaraa.com

Memory system for a relational 

database processor 

by 

Vijaya Kumar Konangi 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Major: Electrical Engineering 

Approved : 

In Charge of Major Work 

M^A^ Department 

For the Graduate College 

Iowa State University 
Ames, Iowa 

1981 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

ii 

TABLE OF CONTENTS 

Page 

INTRODUCTION 1 

REVIEW OF LITERATURE 4 

OBJECTIVE AND OVERVIEW OF THE RESEARCH 27 

ARCHITECTURE OF THE MEMORY SYSTEM 32 

EVALUATION OF THE SYSTEM 55 

CONCLUSIONS 79 

BIBLIOGRAPHY 83 

ACKNOWLEDGMENTS 85 



www.manaraa.com

1 

INTRODUCTION 

An overall trend which is visible in database management 

today is the following: users are becoming increasingly 

oriented toward the information content of their data and 

decreasingly concerned with its representation details. 

Increasingly, the user interface of a modern database 

management system deals with abstract information rather than 

with the various bits, pointers, arrays, lists, etc., which 

may be used to represent information. Responsibility for 

choosing an appropriate representation for the information 

is being assumed by the system and is not exposed to the 

end user; indeed the representation of a given fact may 

change over time without the user being aware of the change. 

The general term for this trend away from representation 

details is data independence. 

Considerable attention is being paid nowadays to n-ary 

relations as a tool for database management. Codd was the 

first to give a rigorous definition for n-ary relations 

in the database context and to emphasize their advantages. 

Codd introduced concepts which have set the direction for 

research in relational database management (7). 

The relational data model makes it possible to eliminate 

representation-dependence from the user interface. In the 

relational model, information is represented in only one way 
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at the user interface; by data values. User requests be­

come free of any dependence on internal representation, 

and hence may be framed in a high-level, nonprocedural 

language. At the same time, the system becomes free to 

choose any physical structure for storage of data, and to 

optimize the execution of a given request. 

There is much to be said on the limitations imposed by 

use of conventional Von Neumann processors for nonnumeric 

applications such as database management. The use of a 

single processor, even a high speed one, for searching and 

manipulating data in large databases is simply too slow to 

meet the response time requirement of many applications. 

Software techniques such as data structures, file organiza­

tional techniques, directories, cross reference pointers, 

computed addressing, etc., alleviate the speed problem to a 

certain extent. However, they introduce undesirable side 

effects such as excess storage requirement, the problem of 

updating pointers, index files and directories, data in­

consistency, and above all greater software overhead. Recent 

research efforts toward a high-level relational data model 

further show the limitations of conventional computers in 

supporting the high-level user's view of data and processing 

requirements. The reason for these limitations is quite 

obvious. A data model or a language which is more 
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convenient for the user typically is more difficult to imple­

ment on a machine which was not designed mainly for supporting 

the high-level data model or the language. Another very 

serious problem in the existing data base management systems 

is that data are not stored at the place where they are 

processed. To "stage" the data into the main memory for 

processing is very time consuming. It often ties up the 

important resources of a computing system such as communica­

tion lines, channels, and data buses. Ideally, data should 

be processed at the place where they are stored to avoid 

spending time in moving data between the main memory and 

secondary memories. There is definitely a pressing need for 

research and development work in database machines whose main 

functions are to efficiently carry out search, retrieval, 

update, insertion, and deletion. 

The purpose of this dissertation is to study an associa­

tive memory with content addressing capability for a rela­

tional database processor. Given the search operand, the 

memory system retrieves the relation or the tuples of a 

relation which satisfy the search operand. The performance 

of the proposed system is evaluated in comparison to con­

ventional software-based database management computing 

systems and its economic viability assessed. 
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REVIEW OF LITERATURE 

The three popular approaches to database access can be 

classified as hierarchical, network, and relational. 

The network approach may be characterized as a host-

language (usually Cobol) embedded network system; it supports 

index sequential, hash, direct, and set-location access 

modes. For example, a record about a city could be accessed 

through the state in which it is located (via set), alpha­

betically (index sequential), or through the country in which 

it is located (via set). The advantage of the network ap­

proach is high performance, because all of the access paths 

can be defined and built (by using pointers) at database 

creation time. The disadvantage is that it is a relatively 

low-level language and involves the user in storage manage­

ment and detailed record access. It is also limited to 

queries that can be satisfied by the predefined access paths 

and the approach is therefore inflexible. The storage 

structures, generally constructed of pointers to linked 

lists, tend to be quite complex. 

In contrast, the relational data model approach is a 

high-level data retrieval and manipulation language that 

shields the user from data formats, access methods, and 

storage management. Access paths do not have to be pre­

defined. The lack of predefined physical access paths means 



www.manaraa.com

5 

that relational databases must be exhaustively searched to 

satisfy a query. Since this searching is very slow on con­

ventional computers, the user is often allowed to optionally 

specify a prior access path, even in relational systems, to 

obtain acceptable performance. But, the benefits of a rela­

tional user interface can be obtained without the drawbacks 

of predefined access paths by providing special purpose 

associative processing hardware to speed-up table searching. 

The hierarchical approach is a subset of the network 

approach in that groups of records can be addressed by only 

one logical path. A hierarchical database is restricted to 

a single owner for each member set; however, a network data­

base can have multiple owners for a member. The hierarchical 

approach has the same advantages and disadvantages as the 

network approach. 

Relational Databases 

The considerable attention paid to n-ary relations as a 

tool for general database management dates from a 1970 paper 

by Codd (7). Codd was the first to give a rigorous defi­

nition for n-ary relations in the database context, and to 

emphasize their advantages for data independence and sym­

metry of access when compared to the hierarchical and 

network models. 

Codd's paper introduced concepts which set the direction 
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for research in relational database management for several 

years to come. The paper defined a data sublanguage as a 

set of facilities, suitable for embedding in a host pro­

gramming language, which permits the retrieval of various 

subsets of data from a data bank. The paper noted that a 

standard logical notation, the first order predicate calculus 

is appropriate as a data sublanguage for n-ary relations. 

The paper also introduced a set of operators (join, pro­

jection, etc.) which were later developed into the well-

known relational algebra. Finally, the paper explored the 

properties of redundancy and consistency of relations, 

which laid the groundwork for Codd's later theory of normal­

ization. 

The term relation may be defined as follows; Given sets 

D^yD2,...,D^ (not necessarily distinct), a relation R is a 

set of n-tuples each of which has its first element from D^, 

second element from , and so on. The sets Dj^ are called 

domains. The number n is called the degree of R, and the 

number of tuples in R is called its cardinality. 

It is customary (though not essential) when discussing 

relations to represent a relation as a table in which each 

row represents a tuple. In the tabular representation of a 

relation, the following properties, which derive from the 

definition of a relation, should be observed: 



www.manaraa.com

7 

1) no two rows are identical; 

2) the ordering of the rows is not significant; and 

3) the ordering of the columns is significant. 

When a relation is represented as a table, its degree is the 

number of columns and its cardinality is the number of 

rows. The columns of the table are called attributes. The 

individual entries in each tuple are called its components. 

A column or set of columns whose values uniquely identify 

a row of a relation is called a candidate key. When a 

relation has more than one candidate key, one of them is 

arbitrarily designated as the primary key. 

A first normal form relation is defined as a relation 

in which each component of each tuple is nondecomposable; 

i.e., the component is not a list or a relation. Relations 

in first normal form may be used with any of the relational 

languages. However, a relation in first normal form may 

exhibit three kinds of misbehavior, which are called update 

anomalies, insertion anomalies, and deletion anomalies. All 

these anomalies arise because more than one concept may be 

mixed together in the same tuple. These anomalies can be 

avoided by normalizing the relations. 

Normalization theory begins with the observation that 

certain collections of relations have better properties in an 

updating environment than do other collections of relations 

containing the same data. The theory then provides a 
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rigorous discipline for the design of relations which have 

favorable update properties. The theory is based on a series 

of normal forms - first, second, third, and fourth normal 

form - which provide successive improvements in the update 

properties of a database. An important objective of normaliza­

tion is the elimination of update, insertion, and deletion 

anomalies. 

Attribute B of relation R is functionally dependent on 

attribute A of R if, at every instant of time, each value in 

A has no more than one value in B associated with it under 

R. Suppose D and E are two distinct subcollections of the 

attributes of a relation R and E is functionally dependent 

on D. If, in addition, E is not functionally dependent on 

any subset of D then E is said to be fully dependent on D in 

R. Any attribute rf R which participates in at least one 

candidate key of R is called a prime attribute of R. All 

other attributes of R are called nonprime attributes. 

A relation R is in second normal form if it is in 

first normal form and every nonprime attribute of R is fully 

dependent on each candidate key of R. The second normal form 

is an improvement compared to the first normal form, but 

sometimes it also exhibits the anomalies associated with the 

first normal form. Therefore, the second normal form is of 

little significance except as a stopping-off place on the way 
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to the third normal form. 

The third normal form has been defined in a variety of 

ways. The original definition was given by Codd (4). The 

third normal form is also referred to as the Boyce-Codd 

third normal form. Later writers have proposed alternate 

definitions which framed the same concept in simpler 

terminology. 

The third normal form is defined as follows: A relation 

R is in third normal form if it is in first normal form and, 

for every attribute collection C of R, if any attribute not 

in C is functionally dependent on C, then all attributes in 

R are functionally dependent on C. This definition is a 

formal way of expressing a very simple idea; that each 

relation should describe a single "concept", if more than 

one "concept" is found in a relation, the relation should be 

split into smaller relations. 

The design of a database in third normal form depends 

on the knowledge of the functional dependencies among the 

attributes of the data. This knowledge cannot be discovered 

automatically by a system (unless the database is completely 

static), but must be furnished by a database designer who 

understands the semantics of the information. In fact, 

there is no unique third normal form representation for a 

given database. Codd briefly addressed the problem of 
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choosing an optimal third normal form from among the various 

alternatives (4). 

Multivalued dependencies, which are a generalization of 

functional dependencies, lead to the fourth normal form for 

relational databases. Multivalued dependencies provide a 

necessary and sufficient condition for a relation to be de­

composable into two of its projections without loss of infor­

mation. The original relation is guaranteed to be the natural 

join of the two projections and the projections taken to­

gether never contain more information than the original rela­

tion. The concept of multivalued dependency was first intro­

duced by Fagin who also defined the fourth normal form (10). 

Let U denote the set of all attributes on which a 

relation R is defined and let X, Y, and Z be disjoint sets 

of attributes of the relation R. Y is said to be multi-

value dependent on X for R(XYZ) where (X,Y,Z) is a partition 

of U, if for every XZ-value xz that appears in R, R(xzY) = 

R(xY). By definition, a functional dependency is also a 

multivalued dependency but the converse is not necessarily 

true. Also, a multivalued dependency that holds for R(XYZ) 

depends not only on the values of X and Y, but also on the 

values of Z. So, a multivalued dependency is said to be 

context-sensitive. On the other hand, a functional dependency 

is not context-sensitive. 
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The concept of multivalued dependency leads directly to 

the fourth normal form. A relation R is in fourth normal 

form if, whenever a no.atrivial multivalued dependency, Y is 

multivalued dependent on X, holds for R, then so does the 

functional dependency, A is functionally dependent on X, for 

every column name A of R. 

Intuitively all dependencies are the result of keys. 

In particular, a fourth normal form relation can have no 

nontrivial multivalued dependencies that are not functional 

dependencies. If a relation is in the fourth normal form 

then it is also in the Boyce-Codd third normal form. A 

relation which is not in the fourth normal form can be de­

composed without loss of information into a family of fourth 

normal form relations. Decomposing a relation into the 

fourth normal form does not necessarily decompose it "as 

far as possible". For example, assume that a relation 

R(A,B,C,D) has no dependencies other than the functional 

dependencies that are the result of A being the key. Then 

R is in the fourth normal form although it is possible to 

decompose R without loss of information into its projections. 

Although every binary relation (a relation with exactly two 

column names) is in the Boyce-Codd third normal form, it is 

not true that every binary relation is in the fourth normal 

form. 

Multivalued dependencies significantly extend the 
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understanding of the logical design of relational databases. 

Multivalued dependencies provide a necessary and sufficient 

condition for a relation to be decomposable into a family of 

relations without loss of information. Multivalued de­

pendencies lead to the fourth normal form which is strictly 

stronger than the Boyce-Codd third normal form. At the 

present time, the fourth normal form is the optimum repre­

sentation, in terms of avoiding the update, insertion, and 

deletion anomalies, for relational databases and any relation 

in the first normal form can be transformed into a family of 

fourth normal form relations without loss of information. 

Database Processor 
Architecture 

Shortly after the invention of the stored program 

electronic digital computer in 1946, storage and retrieval 

of nonnumeric information became an important application. 

With only a few exceptions, the early file access systems 

starting in the middle 1950s and the database systems 

starting in the late 1960s were mapped onto a conventional 

von Neumann computer. Although the desirable way to access 

nonnumeric data is by value, the von Neumann architecture 

precludes this. Therefore, a number of artificial methods 

are used to convert a value into an address. These artificial 

methods include sequential, indexed, hashed, and set access 
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methods. In spite of their indirection, these access methods 

have successfully met industry needs until the present time. 

There has, however, been constant research into many aspects 

of file and database systems in the general areas of im-

p oved functionality, improved performance, and improved 

availability. 

At least one early exception to the use of von Neumann 

architecture to retrieve nonnumeric data existed; this was 

the Univac File Computer. This system, first delivered in 

1954, allowed the addressing of data in mass storage by 

value rather than by address. This was done by storing the 

value of the desired key in a search register, and then 

comparing this value sequentially to values on a drum. With 

this capability, records of up to 120 characters could be 

stored anywhere on the drum and retrieved by value; no 

access method was needed. The importance of this capability 

is only now being rediscovered. 

The quest for improved functionality has led to database 

systems as we know them today—initially using network 

structures, and now with growing interest in relational 

structures. Initially the performance requirement was met 

by brute-force improvements in hardware speed. The one 

element that did not change was the architecture. It is 

only recently that attention has been focused on the need 

for specialized architecture for database management systems. 
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Over a dozen relational database systems have been imple­

mented since E. F. Codd introduced the relational model of 

data in a series of pioneering papers between 1970 and 1971. 

A number of prototype systems (such as MITs MADAM, GMRs 

ROMS, IBMs SEQUEL) were implemented primarily to demonstrate 

the feasibility of supporting high-level, nonprocedural 

data languages based on the relational algebra or the rela­

tional calculus. At about the same time, a number of other 

prototype systems (such as IBM's RM/XRM, GAMMA-0, and Uni­

versity of Toronto's ZETA/MINIZ) were developed for use as 

low-level, database access and storage subsystems for 

implementing high-level, nonprocedural, relational data 

languages. More recently, efforts have been directed toward 

implementing more comprehensive systems (such as IBM's 

SYSTEM R) which incorporates solutions to various specific 

problems which have been identified. A number of systems 

which provide natural language interfaces for casual users 

(University of Toronto's ZETA/TORUS, University of Illinois 

PLANES, and IBMs RENDEZOUS) have also been implemented. A 

few cellular associative processors coupled with rotating 

storage devices (University of Toronto's RAP, University of 

Florida's CASSM, ana University of Utah's RARES) have been 

developed as alternatives to the conventional von Neumann 

processors for supporting the relational model of data. 

Table 1 lists, in approximately chronological order, database 
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Table 1. Relational database management systems 

Name Year Machine Language Status Type Implementors 

MADAM 1970 H6000 PL/1 imp/inact inst MIT Project MAC 
ROMS 1971 H6000 PL/1 imp/act inst MIT EE Dept. 
IS/1(PRTV) 1971 IBM 360,370 PL/1,MP3 imp/act inst IBM UK SC, Peterlee Eng. 
ROMS(REGIS) 1972 IBM 360,370 PL/1 imp/act inst GM Research, Warren, Mich. 
RD/XRM 1972 IBM 370 assembly imp/act inst IBM Ceunb SC, Cambridge, Mass. 
DAMAS 1972 - des/inact inst MIT CE Dept. 
GAMMA-0 1973 - des/inact inst IBM SJ 
SEQUEL 1974 IBM 370 PL/1 imp/inact inst IBM SJ 
RISS 1974 POP 11 Basic-Plus imp/act inst Forest Hospital, Des Plaines, 111 
GMIS 1975 IBM 370 PL/1 imp/act inst MITSSM & IBM Camb SC 
ZETA/TORUS 1975 IBM 360,370 PL/1 imp/inact inst Univ. Toronto, Canada 
OMEGA 1975 PDP 11 des/inact inst Univ. Toronto, Cemada 
PLANES 1975 PDP 10 assembly imp/act inst Univ. Illinois, UrbcUia 
MAGNUM 1975 PDP 10 BLISS mp/act comm Tymshare, Inc. Cupertino, Calif. 
INGRESS/CUPID 1975 PDP 11 C imp/act inst Univ. California, Berkeley 
RARES 1975 - des/inact inst Univ. Utah 
SQUIRAL 1975 - des/inact inst Univ. Utah 
GXRAM 1975 IBM 370 PL/1 imp/act inst IBM SJ 
RAP 1976 - imp/act inst Univ. Toronto, Canada 
RENDEZVOUS 1976 IBM 370 APL(PL/1) imp/act inst IBM SJ 
QUERY BY EXAMPLE 1976 IBM 370 PL/1 imp/act coiran IBM YH 
LEECH 1976 - des/act inst Glasgow, England 
CAPS 1976 - imp/act inst ICL, Stevenage, England 
DEC 1976 - des/act inst Ohio State Univ. Columbus 
SYSTEM R 1977 IBM 370 PL/1 imp/act inst IBM SJ 
DB85 1977 INTERDATA-85 assembly imp/act inst Univ. Kansas, Lawrence, Kan. 
SDD-1 1977 - des/act inst CCA, Cambridge, Mass. 
CASSM 1978 - imp/act inst Univ. Florida, Gainesville 
DIRECT 1978 PDP 11 C des/act inst Univ. Wisconsin, Madison 
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systems which have been designed or implemented to support the 

relational model of data (11). In the taole, the year is when 

an implemented system became operational or when the design 

of a system which has not been implemented was first re­

ported. The machine is the computer on which a system 

has been implemented. RAP, CASSM, RARES, LEECH, CAFS, and 

DEC are designs for specialized processors; SDD-1 is a 

distributed system under development; and DAMAS, SQUIRAL, 

and GAMMA-0 represent proposals for implementing a component 

of a system. The language is the programming language in 

which a system has been implemented. The status of a system 

is designated as either implemented (imp) or only designed 

(des), and as either active (act), that is, currently under 

development or in use, or inactive (inact). The type of a 

system is designated as either institutional (inst), that is, 

the system is developed as a research vehicle or for internal 

use, or commercial (comm). As is evident from the table, 

most of the systems have been software implementations on 

existing machines and there are very few specialized proces­

sors. The rest of this section highlights the most note­

worthy features and contributions of some of the systems. 

In 1970, MADAM (MacAIMS Data Management System) became 

operational as the first relational system. MADAM was imple­

mented on MULTICS utilizing the large, addressable virtual 

memory and flexible access control capabilities of MULTICS. 
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The most interesting feature of MADAM is the division of the 

storage space into the relation space and the domain space, 

and the division of software into a set of procedures 

which operate on the relation space and a set of procedures 

which operate on the domain space. 

A novel feature of IS/l-PRTV (Information System/1 -

Peterlee Relational Test Vehicle) is its microprogrammed 

implementation of the data compression/decompression pro­

cedures. The microprogram implementation is reported to have 

reduced the CPU overhead to 5 percent. Although it has been 

estimated that good data compression techniques may achieve 

20 to 80 percent savings in storage space, only PRTV and 

INGRES (Interactive Graphics and Retrieval System) have 

implemented such techniques. The most important feature of 

PRTV is its optimizer. The optimizer transforms an ISBL 

(Information System Base Language) expression into an alge­

braically equivalent expression which can be more efficiently 

evaluated. Next it attempts to find an optimal set of access 

paths for evaluating the transformed expression by considering 

the estimated costs of various alternative access paths. 

The importance of RDMS/REGIS (Relational Data Management 

System/Relational General Information System) lies in the 

fact that it is one of the few decision-support systems which 

have been developed around relational database systems. A 
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decision-support system is a generalized information system 

which provides not only the basic database query and manipu­

lation facilities but also appropriate data anslysis and 

plotting capabilities to assist policy makers in reaching 

managerial decisions. 

In 1974, the SEQUEL system was implemented at the IBM 

Research Laboratory, San Jose, California. It was primarily 

intended to determine the feasibility of supporting the 

SEQUEL data language. Experience with the SEQUEL prototype 

and many of the ideas developed for GAMMA-0, a hypothetical 

database access and storage subsystem, provided the founda­

tion for the development of SYSTEM R. 

In 1976, the QUERY BY EXAMPLE system became operational 

at the IBM Thomas J. Watson Laboratory, Yorktown Heights, 

New York. It supports the very novel data language called 

QUERY BY EXAMPLE. Development of this system, as in the 

case of SYSTEM R, significantly benefited from experience 

with the SEQUEL prototype implementation. The most note­

worthy feature of the QUERY BY EXAMPLE system is the QUERY 

BY EXAMPLE data language it supports. QUERY BY EXAMPLE 

has been announced as an IBM Installed User Program. Along 

with MAGNUM, it is one of two commercially available rela­

tional systems. 

Relational systems which have been implemented on 
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minicomputers include MAGNUM, PLANES, RISS, DB85, and INGRES. 

MAGNUM is a commercially available system which was developed 

in 1975 by Tymshare Incorporated, Cupertino, California. It 

was intended to be used as a database subsystem for a 

generalized information system and provides extensive compu­

tational and report generation facilities. 

The objective of a natural language interface for a 

database system is to allow casual users to interact with 

the system without the need to learn artificial data languages 

such as SEQUEL and QUERY BY EXAMPLE. The three well-known 

natural language database systems which support the rela­

tional model of data are TORUS, PLANES, and RENDEZVOUS. 

Specialized Hardware 
Systems 

CASSM, RAP, and RARES are designs for cellular associa­

tive processors for performing the query, data manipulation, 

and data definition activities in the relational context. 

CASSM (Context Addressed Segment Sequential Memory) has been 

under development since 197 3 at the University of Florida, 

to support not only the relational model of data, but also 

hierarchical and network models of data. RAP (Relational 

Associative Processor) has been developed at the University 

of Toronto. RARES (Rotating Associative Relational Store) 

was designed at the University of Utah. 
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Basically, the design of these specialized processors 

consists of an array of cellular associative processors 

which are driven in parallel by a central controller. Each 

cellular associative processor (commonly called a cell) is 

composed of a microprocessor (or simple logic) and a segment 

of a rotating secondary storage device (such as a track of a 

drum, disk, CCD, or bubble memory). The processing element 

of each cell performs an operation directly on its asso­

ciated memory segment. 

In CASSM, data are laid out along the track or loop 

of the rotating storage device in variable-length blocks 

(8, 18, 20). Each block, which can contain one or more rows 

of a relation, is treated as a sequence of 40-bit words. 

Thirty-two bits can be used to store either a delimiter, a 

column-value pair, a character string, or (to support non­

relational applications) pointers and instructions. The 

remaining bits are used as a tag to identify word content, 

as mark bits, and for internal processing. CASSM stores a 

relation as a two-level tree. The first level corresponds 

to the entire relation and is represented by a delimiter 

word giving the relation name and the level number. The 

relation rows are stored following this delimiter. 

A row delimiter preceding each row gives the relation 

name and the level number. One word is then used for each 

nonnull value in the row. From the word's 32-bit data field. 
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16 bits are used to encode the column name and 16 bits 

to encode the value. Since encoding space is needed for 

column names but none is wasted for null values, storage 

effectiveness depends on the relations null-value ratio. 

CASSM uses auxiliary storage to mark rows of relation 

and to support its strategy for rewriting a track. When 

CASSM simultaneously selects more than one row for output, 

it uses an output arbiter to output one of them and marks 

the remaining rows for output on subsequent revolutions. 

CASSM uses a bit-addressable RAM associated with each track 

for this. To rewrite a track, CASSM uses two physical tracks 

per logical track. Data is read from the first, analyzed 

and written to the second, then rewritten to the first with 

all desired modifications. 

Like CASSM, RAP lays its data along the tracks of its 

storage device, but the similarity ends there; RAP uses a 

fixed-length representation for the rows of a relation (14, 

17). This length can vary from relation to relation, but 

within a relation all rows must use the same amount of 

storage. Only one type of relation can be stored on a given 

track. Within a track rows are stored one per block, and 

the end of each block is marked by a delimiter. 

The beginning of a track has a special track marker, 

followed by two header blocks. The first block gives the 

name of the relation stored on the track, and second gives the 
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column names in the order in which they will appear in the 

row representations. The blocks following these header 

blocks contain the rows of the relation. The row blocks 

contain the concatenated values of the row in the order given 

by the second header block. These concatenated values are 

preceded by a string of mark bits. All names and values 

of the track are encoded as 32, 16, or 8-bit strings, each 

preceded by a 2-bit code indicating its length. 

Like CASSM, RAP uses an output arbiter to select a 

single row for output when two or more are contending. How­

ever, RAP uses the mark bits preceding each row to indicate 

which rows must be output on subsequent revolutions. To re­

write a row RAP uses two heads per track, a read head con­

nected by a buffer to a write head. The length of this 

buffer determines the maximum size of a block, since it 

must hold an entire row. A row is read by the read head, 

processed in the buffer, and then rewritten with any necessary 

changes back to the track. 

RARES uses a very different organization from CASSM 

and RAP (13). It lays out relation rows across tracks 

(along the radius of a disk) in byte-parallel fashion; the 

first byte of a value is placed on a track, the second byte 

of the value is placed in the same position on the adjacent 

track, and so on. The decision to use a byte-parallel rather 
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than a bit-parallel organization was based on the speed of 

the logic available to process a row laid out along a radius, 

given the rotation time of the disk. Each set of tracks 

used to store a relation in this fashion is called a band. 

The number of tracks in the band may vary; the size of the 

band is determined by the width of a row. Relations with 

wide rows may use more than one radius to store a row. This 

format is called an orthogonal layout. 

The orthogonal layout means that fewer rows can come 

into contention for output. However, some contention is 

still possible, so RARES also needs an output arbiter. It 

uses a fast memory, called a response store, associated with 

each band to mark rows to be output on subsequent device 

revolutions. Since RARES was developed only as a query 

support facility, storage requirements for row rewriting were 

not specified. 

A survey of the access methods used in relational data­

base systems does yield a few interesting and definite 

trends. First, designers of most of the systems have 

elected to support the sequential (i.e., nonkeyed) file 

structure along with one or two types of keyed file structures. 

In keyed file structures, the storage locations of a group of 

tuples are determined by the values of the tuples' key. 

Keyed file structures which have been chosen include hashed, 

indexed-sequential, and inverted structures, as well as binary 
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or ternary search trees. Multilist, controlled list-length 

multilist, and cellular-partitioned structures have never 

been used. 

The use of keyed file structures presents the database 

administrator with yet another difficult problem, namely, 

the task of determining which column or combination of columns 

should be keyed. The problem of determining an optimal set 

of columns to index for an inverted file structure has re­

ceived some theoretical as well as empirical treatment. 

However, selection of columns to be keyed, like the design 

and evaluation of storage structures and access paths, has 

depended on the intuition of the database administrator. 

The costly overhead of monitoring and maintaining a suf­

ficient set of statistics on database usage pattern and 

internal database characteristics, and the difficulty in 

analyzing such a set of statistics may be the main reasons 

for the conventional, intuitive approach to this problem. 

Within the context of an inverted file structure, the 

notion of a clustered index, which has been articulated by 

the implementors of SYSTEM R, is worthy of discussion. A 

clustered index is an index through which tuples whose 

indexed column values are "close" are stored physically 

"near" to one another--"near" in the sense that they are 

in the pages which reside on the same track or cylinder of a 

disk pack. Through a nonclustered index tuples tend to be 
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scattered at random, regardless of the "closeness" of their 

indexed column values. The superior performance of a 

clustered index has been demonstrated by Blasgen and 

Eswaran (2). 

Second, the emphasis placed on increased storage space 

utilization by the early systems (MADAM/RDMS, RM/XRM, PRTV, 

and RISS) has been drastically reduced in the more recent 

systems (INGRES and SYSTEM R). The early systems exhibit a 

division of storage space into what has been termed relation 

space and domain space, whereby each distinct data item in 

any relation (stored in the relation space) is represented 

by a numerical identifier which references the corresponding 

value (stored in the domain space). Although integer values 

of data items are stored as they are, this approach may 

result in an increased storage space utilization, since 

multiple-byte character strings are converted to shorter, 

fixed-length, numerical identifiers. However, this approach 

potentially results in a deteriorated response time, since 

in order to retrieve and output qualifying tuples, access 

must be made not only to the relation space, but also to the 

corresponding domain space. Because of this drawback, and 

also because of the rapid decline in memory costs, this 

division of storage space no longer appears fashionable. 

In the future, variable-length character strings are 

expected to be directly stored in the relations. 
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PRTV and INGRES are the only systems which have imple­

mented some data compression/decompression techniques in 

order to increase storage space utilization. In view of the 

high processing time overhead demanded by the data compression/ 

decompression techniques—20 percent of the CPU time in PRTV— 

it seems unlikely that future systems will implement such 

techniques. 
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OBJECTIVE AND OVERVIEW OF THE RESEARCH 

Existing computer architecture and hardware does not 

provide efficient nonnumeric computation for applications 

such as database management. Most machines are better at 

numerical computation by orders of magnitude than non-

numerical computation. There is no standardization at the 

machine level of any class of nonnumeric operations; a simple 

pattern matching,searching, deleting or retrieving operation 

when encoded at the machine level can look quite compli­

cated compared to a reasonably complex arithmetical assign­

ment statement. During the last two decades, significant 

improvements have been attained in the size and speed of 

primary memory systems, but because of the increase in the 

sizes of the data sets in practical applications most of the 

information must still reside in the secondary memory 

systems. The existing architecture of computers are in­

adequate to handle nonnumeric computations efficiently because 

of the need to transfer blocks of information back and forth 

from the CPU to secondary memory devices. The users of 

machine independent high-level language processors for non-

numeric operations have to depend, therefore, on expensive 

and time-consuming software systems. 

The approach to overcome this difficulty of repeated 

block transfers is to employ parallel processing on different 
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data blocks with associative processing in each block. 

Therefore, clearly, the memory system has a vital role 

to play in the efficient performance of the computing system 

for database management. 

This dissertation work involves the analysis and study 

of a memory system for a relational database processor. 

The relational model of databases seems to be the best 

way to support database management at the present time. 

The memory system for a processor supporting relational 

databases should be capable of retrieving the desired rela­

tion or the tuples of the relation from the database so that 

the processor could further manipulate them. The memory 

system is analyzed in terms of relational database processing 

in a typical university environment; but the same general 

principles can be applied to any other situation involving 

relational databases. The important criteria used are 

explained next. 

It is assumed that only one level of indexing is used. 

An index on the relation name is maintained in the memory. 

Given the name of the relation the index points to the loca­

tion of the relation. The principal advantage of using 

relational databases as opposed to the hierarchical and 

network approaches is that the method is very suitable for 

hardware implementation via associative memories. This 
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advantage is lost if multiple levels of indexing are used. 

On the other hand, if no indexing at all is used there is 

the likelihood that performance will deteriorate because 

a disproportionate amount of time is needed to first locate 

the relations. Hence, a good compromise is to use one level 

of indexing. 

In the study no restriction is placed on the length of 

tuples or attributes of a relation; in other words tuples 

can be of arbitrary length to satisfy the needs of the 

particular data processing function. This is an important 

departure from the earlier implementations like CASSM and 

RAP (8, 14). 

In both CASSM and RAP the value codes are obtained by 

encoding the actual value items (12). It has been pointed 

out that in practice actual values may have to be used 

instead of encoded values, particularly in the light of un­

satisfactory encoding algorithms. To avoid these complica­

tions the proposed memory system does not use encoding 

algorithms. 

Vacant space assignment and garbage collection are 

challenging problems when tuples and attributes have arbitrary 

length. An attempt has been made to address them in this 

study. 

If a rotating associative memory which is disk based is 
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used, the desired relation or the tuples of the relation can 

be read out within two rotations of the memory, if properly 

organized. 

It is assumed that the relations are stored in the memory 

system in the fourth normal form (10). It is assumed that 

it is the responsibility of the appropriate functional unit 

to transform the relations into the fourth normal form before 

being stored in the memory system. The fourth normal form 

was chosen because it is the optimum form at the present time, 

as far as update, insertion and deletion anomalies associated 

with unnormalized relations are concerned. 

The logic-per-track approach in which content-addressing 

is implemented by providing search logic for each track of 

the disk memory is used (12). This logic is given a search 

operand by the CPU. As the device rotates, the search logic 

for each track sequentially compares the tuples scanned by 

the read head with the search operand. All tuples matching 

the operand are eventually output to the CPU. 

The last criterion is that the performance, measured by 

the time taken to retrieve data from the memory system, 

should be superior to that required by traditional software 

implemented relational database management systems. 

The principal contribution of this dissertation is the 

study and analysis of an associative memory, with content-

addressing capability, for a relational database processor. 
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The logic-per-track approach is taken. The tuples and the 

attributes are allowed to have an arbitrary length, no 

encoding algorithm is used, and the system utilizes one level 

of indexing. The performance of this system is analyzed and 

it is demonstrated that it is superior in comparison to 

software-based database management computing systems. 
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ARCHITECTURE OF THE MEMORY SYSTEM 

An associative memory design is the result of design 

choices from a myriad of individual techniques or approaches. 

These individual choices involve compromises or trade-offs, 

and the choices are not independent of each other. In any 

complete system the individual techniques selected tend to 

support each other. This aspect of design is generally 

highly intuitive; thus, system design is more of an art 

than a science. Therefore, when presenting the resulting 

system design, the reasons for the selected approach are 

explained. 

The basic idea behind the memory system architecture is 

to devise a large scale, associative storage system by adding 

content-addressing hardware to rotating storage devices. 

The proposed memory system is a hierarchial system 

employing some of the techniques of classical virtual memory 

systems. 

Figure 1 shows the overall system in terms of block 

diagrams. It consists of a relational processor, the 

secondary memory, the track buffer, and the main memory. 

The relational processor (which is outside the scope 

of this dissertation) performs the traditional operations of 

relational algebra (or calculus) like Project, Restrict, 

Join, etc., on the data which it obtains from the memory 
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system. It may also be responsible for transforming un-

normalized relations into the fourth normal form before 

the data are stored in the memory system. The processor can 

communicate with the main memory and the track buffer. 

The secondary memory is assumed to be a disk storage 

system similar to the IBM 3350 or 3370 system. The rela­

tional data in the fourth normal form are stored along the 

tracks of the disk memory unit. 

Each track of the disk memory unit is provided with 

search logic to implement content-addressing capability. 

The track buffer acts as a cache for the secondary memory. 

The index, which points to the location of the relations 

in the secondary memory, resides in the main memory. When 

a query reaches the processor, the processor searches the 

index in the main memory to find the address of the relation. 

This address is then used to locate the relation in the 

secondary memory. 

Secondary Memory 

In this project the secondary memory has been modelled 

around a disk storage unit similar to the IBM 3350 or 3370 

system, with a movable read/write head. This was chosen 

because at the present time, direct access disk storage 

units provide advantages of low cost and large capacity 
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which are not matched by CCD or bubble memories. The near-

term technological prospects favor the fixed-head magnetic 

disk technology. The technology for read/write heads has 

progressed to the use of magnetic films. The day is not 

too far off when a batch fabricated transducer can be used 

for reading, writing, and sensing track position information. 

Bubble technology suffers from a bit rate problem at 

present, i.e., the data transfer rate is not greatly better 

than a disk. Consider a 512 K-bit bubble chip, a 0.1 MHz 

rotating field, and one sensor per chip. One major loop 

emptying, which is equivalent to a disk revolution time 

becomes about 8 milli-seconds, about half of the 16-2/3 

milli-seconds for disk storage systems at 3600 revolutions 

per minute. Charge-coupled devices do not have a bit rate 

problem, but they are volatile storage media; hence they 

are susceptible to power disturbances or temporary outages, 

unless defensive measures are taken such as standby 

batteries. As the power requirements of charge-coupled 

devices diminish with further technological developments, 

trickle-charged standby battery power systems may also solve 

the CCD volatility problem. In view of the current limita­

tions of CCD and bubble memories it was decided that a disk 

storage unit would be assumed for the secondary memory. 

At a later date, when bubble memories or other devices become 
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cost-effective and comparable in performance the same general 

principles applied in this project can be applied to them. 

The data which are in the fourth normal relational form 

are formatted as per the format in Figure 2,. This format is 

a modified version of the format used by the Symbol 2R 

computer to store structures (16). No restriction is 

placed on the length of the attributes or the tuples of a 

relation, in keeping in line with the criteria for this 

project. 

These data are then laid along the tracks of the disk 

memory unit in chained blocks of 256 bytes or greater. 

Each relation is stored along a track. If the storage 

capacity provided by a track is insufficient, then the 

relation is to be stored on the tracks of the same cylinder. 

The reason for using the same cylinder is to eliminate the 

seek time delay that would have to be incurred if the 

same relation is stored along tracks of different cylinders. 

A relation is essentially a matrix representation of the 

data, in addition to having other properties that are unique 

to relations. The format used to represent the data in this 

project is a linear representation of a matrix, i.e., it is 

similar to laying the tuples of the relation end-to-end. 

Hence, all the inherent properties of tuples and relations 

are still preserved. Additional data items like link and 
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Figure 2. Format of data stored in secondary memory 
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location information; memory connection information, etc., 

have been included for ease of processing. 

The relation # in the format could be either the name 

of the relation itself, which by definition of a relation 

is unique for each relation, or a unique number assigned to 

each relation via for example a hash code. By the same 

token, the tuple ID could be either the primary key or a 

unique number. Obviously, it is more advantageous to 

eliminate the use of hash codes but the format does provide 

this option. 

In this format, a relation is enclosed between the 

group marks and item separators are used to separate 

the data items. Special characters like^^,^p, etc. are 

used to indicate the nature of the data that follows the 

characters. For example, the character^) indicates that 

the data that follows are the relation #. The character 

indicates that the link and location information follows 

it, the character^T)indicates that the tuple ID follows it, 

the character indicates that the attribute # follows 

it and the character indicates that the attribute data 

follows it. The character is followed by the memory 

connection information for extending block to block and the 

character indicates that the remaining bytes are blanks 

and may be ignored. 
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An extended 8-bit ASCII code is utilized to represent 

the data. The standard characters of the ASCII code are 

represented with a leading zero attached to their normal 

ASCII depiction. The group marks, item separators, and 

special characters are represented as follows : 

Group marks < 1110 0001 

> 1110 0010 

Separators 1 1010 0001 

A 1010 0010 

Special 

© characters © 1100 0001 

© 1100 0010 

© 1100 0011 

© 1100 0100 

© 1100 0101 

0 1100 0110 

© 1100 0111 

Decoding the left-half byte will indicate the nature 

of the character; that is, whether it is a group mark, 

separator, special character, or standard ASCII character. 

This information may be used to set flags and route the 

data to the appropriate logical unit. Thus, from an 

implementation viewpoint, this representation is very 

attractive. 

Blasgen and Eswaran have demonstrated that the speed 



www.manaraa.com

39 

of evaluation of a query depends on whether the relation is 

clustered or unclustered (2). The proposed index, layout 

of data along the tracks and, if necessary, along the tracks 

of the same cylinder, and the format ensures that the data­

base is indeed clustered. In this case, the main reason 

that the relation is clustered is because the data are 

laid along the tracks of the sêune cylinder. 

To understand the importance of clustering, suppose 

that a sequence of M tuples corresponding to an interval of 

key values in index I of relation R is to be accessed. If 

the relation is clustered, then this sequence can be obtained 

b y  a c c e s s i n g  o n l y  ( a p p r o x i m a t i n g  t o  a  f i r s t  d e g r e e )  ( M / | R | ) D  

pages, where D is the number of data pages of relation R and 

|R| is the size (number of tuples) of R. If the relation is 

unclustered, the M data pages will be accessed. If |R| = 100 

tuples/relation, M = 40 tuples, and D = 20 pages; then for a 

clustered relation 8 pages will be accessed and 40 pages 

for the unclustered case. The difference in performance 

is considerable. 

Track Buffer 

A Track Buffer is the most important unit of the proposed 

memory system and is based on the logic-per-active track 

approach. It is composed of comparison logic and local 
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storage. The logic-per-active track approach takes ad­

vantage of the fact that rotational storage devices with 

an active read head per surface may have all the data of a 

relation available for inspection per revolution time. 

This particular method has been chosen for study be­

cause a significant performance enhancement compared to 

relational database management systems implemented on con­

ventional processors can be expected by using this technique. 

This argument is based on the following observations. First, 

all track buffers process one or more given operations in 

parallel over the entire storage device. Second, the need 

to access and maintain auxiliary data structures such 

as indexes and pointers necessary for mapping the logical 

relations onto their physical counterparts is substantially 

reduced. Third, the relational interface optimizer, which 

decomposes the highly data-independent and concise rela­

tional query and data manipulation expressions into a 

sequence of calls to the database access and storage sub­

system, is likely to be considerably simplified. 

The overall architecture of the track buffer is shown 

in Figure 3. The most important functions of the track 

buffer are searching, storing, and retrieving. Several 

comparator elements form the basis of the associative 

addressing architecture of the track buffer. The comparators 
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can independently test the contents of one attribute in the 

database against several literals or several attributes 

each against different literals. The true or false results 

of the comparison tests on a tuple can be combined into a 

disjunctive or conjunctive result to determine if the tuple 

associatively qualifies for further processing. 

An analysis of the requirements for university 

administrative data processing indicates that the distribu­

tion of the number of bytes/attribute is bi-modal as shown 

in Figure 4. Typically, the length of an attribute ranges 

from 1 to 40 bytes. For text-editing and other allied 

purposes, a length of 1000 to 5000 bytes/attribute is suffi­

cient. The distribution of the number of attributes/tuple 

is shown in Figure 5. These distributions will be used 

later for the purpose of analyses as representative ones. 

The track buffer comparison logic for the proposed system 

is shown in Figure 6. Register 1 holds a constant value which 

is the search operand and depends on the query. As data 

streams off the read head it is stripped of its group marks 

and separators. The data are shifted or parallel loaded 

into shift register 2. Registers 1 and 2 are assumed to be 

32 to 64 bytes long (as a convenient powers of 2). A 

minimum of 32 or 40 bits could be used for the anticipated 

attribute lengths. 
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The data from shift register 2 are then transferred 

to a 64 byte long latch. Now, the contents of register 1 

and the latch are compared. This comparison is done in 

parallel over all the 64 bytes. The comparator logic, in 

the simplest case, consists of 64 subtracters with a 

cumulative zero flip-flop used to compare the equal condi­

tion and a borrow flip-flop to remember the sign of the 

result. 

In this architecture, the comparison of the data in 

the latch with the contents of register 1 and the loading 

of data from the storage device into shift register 2 is 

done in parallel. This parallel operation enhances the 

rate at which data are searched and retrieved and it ensures 

that the rate at which comparisons are carried out is faster 

than the rate at which data is read from the disk. 

As noted previously the comparators need to be at 

least 40 bytes long to accommodate the "normal" attribute. 

Clearly, a length of 64 bytes, which has been picked, should 

satisfy a significant majority of queries. The probability 

of requiring a length greater than 40 bytes is assumed to be 

low. If a length greater than 64 bytes is required, the 

comparison is done piece-meal, 64 bytes at a time. In 

this case, the track buffer logic keeps track of the result 

of each block of comparison so that the results can be 
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combined to determine if the data qualifies for further 

processing. In this case, the time required to select 

tuples could be greater than a single revolution time. 

If the comparison is satisfactory, the data are output 

to the relational processor for further manipulation. If 

the data does not fulfill the requirement, the comparison 

procedure is repeated on the next set of data. 

The mask register facility allows one or more of 

the bytes to be involved in the comparison. For exeunple, 

certain attributes might be selected from a tuple. By im­

bedding attribute identification and other tuple structural 

information in the data stream, the selection can be quickly 

made in the key byte. 

As another more complex example, several alternative 

representations of the attribute data may be acceptable. 

For instance, John A. Jones, John Jones, or J. A. Jones 

might be alternative acceptable spellings of a name. By 

allowing rapid loading of both the search operand and mask 

register, alternative spellings could be searched as the 

data is processed. The tuple number might also qualify the 

tuple for examination. 

Although the 32 to 64 byte comparison logic seems a 

large amount to allocate per track (800 to 1600 latches or 

flip-flops, 256 to 512 bits of ALU) this amount can be 

obtained in a single integrated VLSI circuit. The processing 
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speed assumed (% 200 n.sec. per full comparison) would allow 

the comparison logic to be shared among tracks. If it were 

necessary to reduce logic, the buffer logic length could 

be reduced to 16 bits at the expense of processing time. 

There may be an output problem associated with the 

concurrent processing of data on many tracks. This problem 

arises because while the data can be read from the storage 

device in parallel, selected tuples can only be received 

by the channel sequentially. When tuples are selected 

simultaneously on several tracks there may not be sufficient 

time to output these bit-serial tuples in sequence to the 

channel. 

An obvious solution is to use an output arbiter which 

allows only one of the simultaneously selected (bit-serial) 

tuples to be output to the channel. The remaining selected 

tuples are output subsequently by providing additional 

temporary storage. 

A proposed architectural enhancement is to overlap the 

loading and unloading of the track buffers with comparison 

processing by pairing track buffer memory segments. The 

track buffer segment pair configuration is shown in Figure 7. 

A pair of memory segments are used per track. The pair of 

segments can be viewed as two memory devices, one being the 

primary track buffer and the other being the buffer memory. 

Track connections are reversed as needed. By eliminating the 
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delays caused by loading and unloading the throughput 

capacity is increased. 

The storage associated with the track buffers may in 

fact be a single high speed memory of sufficient speed to 

handle the throughput. Storage can be realistically ex­

pected to be managed in minimum blocks of 256 bytes. The 

memory therefore, is assumed to be 1024 bytes with a 

cycle time less than 100 nanoseconds to handle expected 

track traffic. 

Main Memory 

For the proposed system one level of indexing is used 

with the index residing in the system main memory. Given the 

name of the relation, the function of the index is to supply 

the relational processor with the starting address (cylinder 

and track) of the relation in the secondary memory so that 

the relational processor can initiate the search for the 

relation in the secondary memory. 

This index is table-driven and its size depends on the 

size of the secondary memory. Each relation requires two 

entries in the index, the name of the relation and its 

starting address. On the other hand, as indicated in Figure 

4, attributes are of variable length and typically could be 

as long as 40 bytes. Also, each tuple can have anywhere from 
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2 to 6 attributes as shown in Figure 5. Therefore, clearly, 

the size of the index is much smaller than the size of the 

secondary memory. 

As far as speed is concerned, the time taken to search 

the index in the main memory should be less than the time 

taken by the secondary memory and the track buffer to out­

put dâta to the relational processor to satisfy a query. 

Even for serial search in a conventional system, this can be 

conveniently done. 

Garbage Collection 

When variable length tuples are used, a strategy for 

garbage collection is needed. A larger tuple clearly cannot 

be inserted into a smaller tuple position without reposi­

tioning other data. One alternative is to not do garbage 

collection. Whenever the relation is written back to 

secondary memory, the relational processor deletes the in­

valid tuples and only the valid tuples are written. In 

the event of a crisis point (no more available storage), the 

relations are written back to secondary memory after the 

relational processor has deleted the invalid tuples. This 

is a simple and effective strategy for garbage collection 

when attributes and tuples have variable length and can be 

easily implemented in hardware. However, because a block 
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structure is assumed with chaining capability, addition 

or deletion of a block is simple and straightforward in a 

cylinder. 

Relational Processor 

The relational processor has a number of important 

functions to perform so that the memory system as a whole 

operates efficiently. The design of the processor itself 

is outside the scope of this dissertation but it is assumed 

that the processor can do the following operations. 

The relational processor is responsible for normalizing 

the relations into the fourth normal form and storing this 

data in the secondary memory in the format shown in Figure 

2. When a query reaches the processor, the processor 

searches the index in the main memory and obtains the 

starting address of the relation. This starting address is 

then supplied to the secondary memory so that the search for 

the relation and the tuples can be initiated. The relational 

processor provides the track buffer logic with the search 

operand. 

The processor performs update, insertion, and deletion 

of tuples. The tuples output by the track buffer are used 

by the processor to perform the standard operations of 

relational algebra such as join, project, division, and the 

traditional set operations. 
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Track Buffer Micro-operations 

The proposed track buffer comparison logic is capable 

of performing the following micro-operations set. By using 

an appropriate sequence of these micro-operations the 

content-addressing capability of the track buffer comparison 

logic can be exploited. 

1) shr I D/N - shift-right the contents of register I 
(I = 1 or 2); either data (D) or null 
values (N) are shifted into the left­
most byte-positions. 

2) k shr I D/N - same as previous micro-operation except 
that the contents are shifted by k 
byte-positions. 

3) shl I D/N - shift-left the contents of register 
I (I = 1 or 2); either data (D) or null 
values (N) are shifted into the right­
most byte-positions. 

4) k shl I D/N - same as previous micro-operation except 
that the contents are shifted by k 
byte-positions. 

5) REG a (Nj^-N^) •*- data/query — data from the secondary 
memory is loaded into N, through N2 
of register 2, if a=2; or load query 
from the processor into register 1, 
if a=l. In the default case, i.e., 
only one byte is to be loaded in, 
only Nj^ is specified. 

6) LMR (NU-N.) - load mask register so that specified 
bytes, Ni through N2, of register 2 
can be masked. 

7) Enable/disable mask 

8) LAT +- REG 2 (NL-N.) - Transfer bytes N, through N2 
of register 2 to the latch. 
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9) BUS •*- LAT (N.-N-) - bytes through N2 of the 
latch are transferred to the 
bus. In the default case only 

is specified and byte of 
the latch is transferred to the 
bus. 

10) COMP (1-3) = REG 10 LAT - bytes of register 1, 
which are determined by 
the mask register, are 
compared with the con­
tents of register 1. 
The three outputs of the 
comparator, 1 through 3 
(equal-to, greater-than, 
and less-than), and flags 
are correspondingly set. 

11) LCCAT (a)(3) - load compare count and test. Load the 
compare count register with a value 
equal to the number of byte locations 
where the contents of register 1 
matches the contents of the latch. 
Based on the test condition (a), 
set the corresponding flag (8). 

12) FLAG 1,0 - set or clear flag X^. 

13) Branch on FLAGS (a, ) - branch on combination 
of flags (a, ) 
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EVALUATION OF THE SYSTEM 

In this chapter the proposed memory system is critically 

evaluated, under typical conditions, in order to justify 

the usefulness of the system in comparison to existing systems. 

The performance of the system in terms of processing time is 

determined and it is demonstrated that the proposed system 

architecture is superior to present software-based systems. 

It is also shown that the proposed system appears cost-

effective for relational problems. 

The efficient organization and management of large 

storage spaces are the central issues in database management 

system design. Memory systems hosting databases exist in 

a three-dimensional space defined by access time, cost, and 

capacity. The successful design achieves an optimum balance 

between access time and cost, while the values of these 

dimensions always maintain a mutually inverse relationship. 

The designer seeks the fastest possible access time at the 

lowest possible cost/bit for the entire memory system. The 

third dimension, total database storage capacity, is pri­

marily determined by start-up costs and end-user application 

requirements. 

In this project the secondary memory, where the rela­

tional database is resident, has been modelled around a 

disk storage unit similar to the IBM 3350 or 3370. This 
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choice, clearly, meets the general criteria discussed 

previously. 

Two recent developments in hardware technology show 

promise for providing direct support for the relational data­

base model. These developments are the very-large-scale 

integration of logic on chips and the development of electronic 

rotating memory based on the CCD and magnetic-bubble technology. 

The capability of placing sophisticated and specialized logic 

can be easily replicated and distributed over data. 

The most effective distribution associates logic with 

small amounts of data. Logic can be distributed over data 

in any of three ways: 1) by integrating both the logic and 

the data on a single VLSI chip, 2) by associating the logic 

with the read/write mechanism of a track or loop of rotating 

memory, and 3) by configuring a distributed microprocessor 

based architecture. 

The first approach holds little promise, at present, 

for database applications, since it is too expensive for the 

large amounts of data that are typically involved. The 

second and third approaches, however, are worth investi­

gating. In this project, the second technique has been 

used, rather than the third, because it is cost-effective 

for a class of problems. If more functions were to be 

implemented, then the third approach using microprocessors 

can be utilized. 
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By associating the selection logic with the read/write 

mechanism of the memory, the system has the ability to select 

at the device level. This has two major consequences. First, 

since each track or group of tracks has its own associated 

logic, the search and retrieval operations can be performed 

over all trrcks in a cylinder in parallel provided the 

storage devices are appropriately constructed. Therefore, 

the system has a high degree of parallelism incorporated into 

it. Because of this inherent parallelism, the need for 

indices has been minimized. The system uses only one index 

which provides the cylinder number for a given relation. 

Thus, the maintenance of such access structures is also mini­

mized. A second advantage of this approach is that only 

data meeting the search criteria and selected by the logic 

are output to the relational processor for further processing. 

This reduces the data transfer costs and increases the ef­

fective utilization of the relational processor. By in­

creasing the utilization of the relational processor the 

throughput of the entire system is enhanced. 

There are two approaches to utilizing content-addressable 

hardware to achieve very high throughput; that is to complete 

the content-search retrieval and update the database in the 

shortest possible time by making use of several content-

addressing processors. 
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The multiple content addressability and single data 

stream (MCSD) approach merges the data from all the tracks 

into a single data strecun that is content addressed by 

multiple processors using different conjunctions. The 

single content addressability and multiple data streams 

(SCMD) approach processes multiple data streams, one from 

each track, in parallel. Each processor uses the same con­

junction. 

In the MCSD approach, one content addressable processor 

handles the first conjunction while the second processor 

handles the second conjunction. Typically the i'th processor 

handles the i'th conjunction. The approach assigns each 

processor a different conjunction. At any instant, all the 

processors examine the same data bits against their own 

conjunction. Thus, at that instant, the entire parameter 

of the search-retrieve instruction is applied to those data 

bits. In order to make the same data bits available to 

every content addressable processor, the system replicates 

the data bits for each processor. Otherwise, contention 

over the input bus for the same data bits will be the bottle­

neck. At the end of a disk revolution, an entire cylinder 

of records are replicated and content addressed. 

In the SCMD approach each content addressable processor 

uses the same conjunction and each processor examines data 
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from a different track; thus processor #2 will content 

address the data from the second track in the cylinder. 

In the SCMD approach, each content addressable processor 

examines a different data stream but may be capable of 

using only a part of the parameter of the search-retrieve 

instruction, namely a conjunction. To complete the entire 

parameter a number of passes of the data may be necessary. 

The chief advantage of the MCSD approach is that it 

can process a complete parameter in one disk revolution if 

all the relations are on a single cylinder. Merging multiple 

data streams requires a high bandwidth; the number of tracks 

in a cylinder may thus have to be limited. Moreover, if 

the search parameter contains only 1 or 2 conjunctions, 

then a few processors are very busy while most are idle. 

Finally, since all processors are working on the same 

parameter, there must be some communication network among 

them, which adds complexity to the overall system. This 

approach is very inflexible and severely restricts the 

possibility of changing the number of disks in a cylinder. 

This is a serious limitation of the technique, since in a 

database management system the number of disks in a cylinder 

may have to be varied to reflect the changing needs for 

storage capacity. 

The major advantage of the SCMD approach comes from 

associating a content addressing processor with each track. 
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This makes the design essentially independent of the number 

of tracks per cylinder and encourages a large cylinder size 

with a great number of tracks. Since each processor func­

tions independently of the other processors, no intercon­

nection logic between the processors is needed. The approach 

is very flexible and the number of disks used can be changed 

if necessary. In addition, the processing of a simple 

parameter using only 1 or 2 conjunctions is evenly spread 

among the different processors. The only disadvantage of 

the SCMD approach is that a parameter of multiple conjunc­

tions may require multiple disk revolutions for processing. 

The memory system in this project uses the SCMD approach. 

Each track of the memory has its own associated track buffer 

comparison logic which is used for content addressable 

processing. All track buffers receive the same query from 

the relational processor and each track buffer examines 

data from a different track; that is, each content addressable 

track buffer uses the same search criteria but examines a 

different data stream. This approach is very flexible and 

the number of tracks in a cylinder can be changed, to reflect 

the changing needs for storage capacity, without major 

changes in the architecture. Besides, no interconnection 

logic is required between the track buffers. 

A large database, such as the one needed for a university 

administrative data processing, must reside on many cylinders 
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or even on many disk drives. The management and content 

addressing of an entire cylinder space pose a problem be­

cause a user request may cause the entire cylinder space 

to be content addressed. In such a case the cylinders 

must be content addressed in sequence, each cylinder 

requiring an access-arm movement. To avoid system per­

formance degradation, the address space must be reduced to 

the few cylinders that will satisfy the search-retrieve 

instruction. 

The information used to reduce the address space may be 

stored in a directory in the form of indices. In a con­

ventional software-based system, the directory can be as 

much as one-tenth the size of the database. The architecture 

in this project uses large, cylinder-sized, content-

addressable blocks. An address is only a cylinder number 

rather than a combination of a cylinder number, track number, 

sector number, and the name of the relation. As shown in 

Figure 4, attributes are of variable length and could be as 

long as 40 bytes. Also, each tuple could have 2 to 6 

attributes as indicated in Figure 5. Therefore, clearly, 

the size of the index is much smaller than the size of 

the database and can be reduced to as little as one percent 

of the database. The degradation in performance in the 

absence of an index and the relatively small size of the 

index when compared to the database justify the use of an 
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index to minimize access to the cylinder space. The rela­

tional processor can further upgrade the performance. The 

relational processor can take a Boolean expression of 

predicates as the parameter of a search-retrieve instruction 

about a relation and by searching the stored index, generate 

a list of cylinder numbers to be content addressed. 

In any data representation, it is very desirable to 

close the gap between the physical structure of the data and 

the information structure of the data as seen by the user. 

This will avoid multilevel data mapping which reduces system 

efficiency and data reliability. The relational data model 

does an excellent job of closing this gap. It is therefore 

necessary that in a relational database machine the storage 

representation used be as close to the relational database 

model as possible so that none of the properties of the 

relational model are compromised. The format used to repre­

sent the data in this project is a linear representation of 

a relation; it is similar to laying the tuples of the 

relation end-to-end. Therefore, all the inherent properties 

of tuples and relations are still preserved. By storing 

the actual values instead of encoded values the problem of 

encoding and decoding has been avoided which have been 

problems in previous relational database systems (12). 

The additional data items in the format are for ease of 
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processing and do not have any effect on the properties of 

relations. Because of the presence of delimiters either 

the entire tuple or s specified domains of qualified tuples 

may be read out by the relational processor. This signifi­

cantly reduces the data to be transmitted across the channel 

within a given time interval. Such a reduction will, on 

the average, leave the channel with spare capacity. This 

spare capacity is exploited by processing data from many 

tracks simultaneously. In this way, the transmission rate 

of selected data is increased. 

The system has the capability of storing the data 

structures very close to the relational data model. The 

ordering of the tuples is, therefore, not significant. This, 

in turn reduces the complexity of the logic needed for up­

date, insertion, and deletion which are the three basic 

operations in a database system. For updating, the updated 

tuple can be written into the memory. A new tuple can be 

inserted as the last tuple in the relation since the order 

of the tuples is immaterial. A tuple can be deleted without 

effecting the other tuples in the relation. The same can 

be done for updating, inserting, and deleting relations. 

When a relation is updated; either some or all of the tuples 

are updated, or new tuples are inserted in the relation. No 

change is needed in the index when a relation is updated. 
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If a relation is inserted into the database, it can be in­

serted anywhere in the memory where there is sufficient 

storage capacity for the relation. A relation can be in­

serted anywhere because the order of the relations is 

immaterial. An entry corresponding to the relation is 

needed in the index. Since the order of the entries in 

the index is insignificant, the entry could be anywhere in 

the index. When a relation is deleted from the database 

the corresponding entry in the index is also deleted. Since 

relations and their entries in the index are unordered, 

this deletion has no impact on the remaining database. Hence, 

it is seen that the system is very flexible for update, 

insertion, and deletion of tuples and relations. 

An additional, desirable feature of the format is that 

no constraint is placed on the length of the attributes, 

the number of attributes in a relation, and the number of 

tuples in a relation. Hence, the format used is very 

versatile. 

The performance of the system depends on the following 

parameters : 

1) clustering of the data; 

2) parallelism in track buffers; 

3) processing a cylinder at a time; and 

4) minimum amount of indexing. 

Each of these parameters is now examined individually and 
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the effect on performance enhancement analyzed. 

As shown by Blasgen and Eswaran, physical clustering 

of logically adjacent items is a critical performance param­

eter in database mangement systems (2). Clustering of 

logically adjacent data items drastically reduces the 

cost of accesses, to the storage unit, which is a critical 

performance parameter in any system. In a clustered data­

base system, tuples which are logically adjacent or close 

are stored physically near to one another; near in the 

sense that they reside on the same tracks or cylinders of 

a disk drive. Unclustered databases tend to be scattered 

at random regardless of the closeness or logical adjacency 

of the data items. 

A frequent need in database management systems is the 

ability to access logically adjacent data items. It is 

therefore crucial to have a clustered database so that 

the cost of access to the storage is minimized. Clearly, 

the speed of evaluation of a query depends on whether the 

database is clustered or unclustered. 

In the proposed memory system, the data in a relation 

are stored along the tracks of the disk. If the storage 

provided by a track is insufficient for a relation, the rela­

tion is stored along the tracks of the same cylinder. The 

format used for storing the data allows for link and location 
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information to be included for extending from block to block. 

Now, if data along all tracks of the same cylinder are 

processed in parallel simultaneously, the data are accessed 

at most once and hence the data are essentially clustered. 

As a consequence of this clustering, the seek time involved 

in moving the read-head from track to track is reduced to 

the bare minimum of one seek time. Since large relations 

are stored along the tracks of the same cylinder, in one 

seek time the read heads are positioned properly to access 

the entire relation. The rotational delay is also sub­

stantially decreased because the entire data stored along 

one track can be examined in one revolution. At the same 

time, since all tracks of a given cylinder are searched in 

parallel, the entire relation can be content addressed in 

the time taken for one revolution of the disk memory. As 

stated previously, in an university administrative database 

system it is expected that in a vast majority of cases, the 

storage provided by one cylinder is adequate for storing a 

relation. Clearly, because of the proposed layout of the 

data the maximum delay to access an entire relation stored 

on one cylinder is equal to one seek time plus one rotational 

delay time. 

If a relation is too large for one track and is stored 

along tracks of different cylinders the performance of the 
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system will degrade considerably as is now shown. Using an 

IBM 3350 disk-drive system with movable read/write heads, 

25 milli-seconds will be needed for the seek time and there 

will be a further 8.4 milli-seconds of rotational delay. 

This 33.4 milli-seconds of delay will be required each time 

tracks in different cylinders have to be searched. The IBM 

3350 has a data transfer rate of 1200 bytes oer milli-second 

and comoared to this data transfer rate the above delay is 

a considerable penalty to be incurred because the database 

is unclustered. A clustered database will reduce this delay 

to the minimum possible. 

FundamerLcd to the concept of a database computer is 

the accessing of data on the basis of value other than the 

position. In a parallel associative memory, a parallel 

search is performed over a few thousand bytes in a time 

of the order of micro-seconds. In a serial associative 

memory, a serial storage unit like a disk is searched 

serially to find data meeting the search criteria. Typically 

it can search megabytes in tens of milli-seconds. Unlike 

the parallel associative memory, the serial associative 

memory is not limited to equality searches and hence the 

serial associative memory is suited for a wider range of 

applications. The memory system in this project is a serial 

associative memory. 
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The system derives its strength primarily because of 

two capabilities; content addressing and parallelism. When 

data are resident in the associative memory, the system 

can access the data by content and can perform search 

operations in parallel, such as exact match, greater-than, 

less-than, maximum, minimum, and between limits. And 

search is fundamental to such operations as retrieval of 

data, updating data already in the database, sorting, and 

merging. The system architecture has a high degree of 

parallelism for performance enhancement, as discussed 

presently. Parallel processing, also, reduces the software 

indices required for the system to operate. 

By associating the track buffer comparison logic with 

each track in a cylinder of the disk memory all tracks are 

searched in parallel. As indicated in Figure 6, shift 

register 1 contains the search operand which is the query. 

Data from the memory are shifted in to shift register 2. 

Data from shift register 2 are then transferred to a 64 

byte long latch and compared with the contents of shift 

register 1. For an exact match, between the data and the 

query, a match is needed between every byte of the data 

and the query. Therefore, by using the result of the 

comparison in every byte the logic can determine an exact 

match. For greater-than and less-than conditions, the 

logic can scan the result of the comparison, starting from 
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the most significant byte and proceeding towards the least 

significant byte. The highest order byte location where a 

match does not occur will indicate the relative magnitude 

of the data with respect to the query. At this location, 

if the data are less than the query, then the entire data 

are less than the query. Similarly, if at this location 

the data are greater than the query then the entire data are 

greater than the query. Thus, the track buffer comparison 

logic can check for the three most common conditions of 

equal-to, greater-than, and less-than. Because of the 

use of the ASCII representation for alphabetic data and 

query, the comparison logic can be used for alpha-numeric 

data and query. 

In the track buffer comparison logic, the subtracters 

are the units which require the largest amount of time to 

complete their operation. It is therefore advantageous to 

perform some other operation while the comparison is being 

done. In the proposed memory system, while the comparison 

is being done, the next set of data from the memory are 

shifted into the track buffer memory. If the query for the 

next set of data is the same as for the previous set of 

data, the new query need not be loaded in. If the query 

is different, then the new query is loaded into register 1 

during the same time that the data are shifted into shift 
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register 2. Since the length of the data and the query are 

the same, by the time the data are shifted in the query 

can be easily loaded in parallel. Thus, the loading of the 

data and the query, and the search operations proceed in 

parallel and this is another feature of the parallelism in 

the system. 

As a result of moving selection logic closer to the 

data on rotating storage only selected tuples of the relation 

need be output for further processing. However, if many 

tuples from different tracks of the cylinder have been 

selected, two or more of them may contend for the output 

channel. In such cases, only one tuple can be output and 

the others must wait for subsequent free time. Using an 

output arbiter, only one of the simultaneously selected 

tuples can be output to the channel; the remaining tuples 

being output later from the track memory may restrict the 

output rate for selected tuples. 

By using a pair of track memory segments as shown in 

Figure 7, for each track of the cylinder; the loading of 

data to be searched from the disk memory and the unloading 

of selected data to the relational processor is overlapped 

with comparison processing. In this architecture, logically, 

one track buffer functions as the primary track memory seg­

ment while the other is used as the loading memory segment. 
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The system cannot be delayed by the loading and the un­

loading of the data as long as the total processing time for 

the subset of the data being processed is longer than the 

time to unload selected tuples and to load the next subset 

of data to be processed. This architectural enhancement 

further increases the throughput capacity of the system. 

An approximate analysis of the system may be done as 

follows; a more rigorous analysis of the performance ef­

fectiveness is done later in the chapter. In the IBM 3350 

disk drive system, there are 19 tracks per cylinder and the 

proposed system would process an entire cylinder in one 

revolution. But conventional disk systems process one track 

at a time; therefore, a performance improvement factor of 

19 can be expected over conventional disk systems. Because 

of the minimum amount of software and indexing, an improve­

ment in performance by at least a factor of 1 to 2 can be 

expected. Since comparison processing takes place in 

parallel with shifting in of the data from the memory, the 

performance is enhanced by a factor greater than 1. Further 

a pair of track memory segments are used for each track of 

the memory; this gives rise to additional improvement. Thus 

the system is likely to have a hardware processing power 

which is at least 19 to 152 times that of conventional 

software-based systems with the same disk system. 
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Performance Effectiveness 

In order to demonstrate the performance effectiveness 

of the system, the performance of the system is compared 

to that of an IBM System 370, which is a general-purpose 

system that can be readily tailored for a variety of applica­

tions. If an IBM System 370 is used as a relational 

database management system then it would be software-based. 

The IBM 3350 disk drive system has a data transfer 

rate of 1.2 million bytes per second. In the analysis which 

follows, a data trasnfer rate of 2.5 million bytes per 

second is used, as a worst case value, which will account 

for improvements in technology in the next few years. At 

this data transfer rate the memory will transfer 1 byte 

every 400 nano-seconds and hence will take 25.6 micro­

seconds to transfer 64 bytes of data. 

In the analysis standard low power Schottky circuits 

are used for the track buffer logic for analysis purposes. 

The SN74LS164 which is an 8-bit parallel-out serial shift 

register can be used for shift registers in the track 

buffer. It has a maximum guaranteed clock frequency of 

25 MHz. If a 20 MHz clock is used, which is less than the 

maximum guaranteed frequency, the SN74LS164 can shift in 

64 bytes of data in 25.6 micro-seconds. Hence, the data 

can be shifted into the shift registers in the track buffer 
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at the same rate as they are read from the memory. In 

this 25.6 micro-seconds, the data should be transferred 

to the latch, compared and output to the relational 

processor scanning every possible position of the operand. 

In the worst case, the SN74LS164 requires 32 nano­

seconds for propagation delay. With a 20 MHz clock, this 

leaves 18 nano-seconds for set-up on the inputs to the 

latch. The SN74LS273, which is an octal D-type flip-flop, 

can be used for the latch. These flip-flops have a maximum 

guaranteed clock frequency of 30 MHz which is less than the 

20 MHz frequency used for the shift registers. Under worst 

case conditions, the SN74LS273 will need 27 nano-seconds 

for propagation delay. The SN74LS85, which is a 4-bit 

magnitude comparator and has outputs for the three condi­

tions of greater-than, equal-to, and less-than, could be 

used to compare the data with respect to the query. For 

worst case conditions, the SN74LS85 requires 45 nano­

seconds for propagation delay. Thus, even under worst 

case conditions only (27+45 =) 72 nano-seconds are needed 

to transfer the data to the latch and perform the com­

parison processing. This 72 nano-seconds is much less than 

the 25.6 micro-seconds that the memory takes to transfer 

the next set of data to the track buffers. That is, the 

search-retrieve operation can be performed on the data at 
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the same rate at which the data are read from the memory 

with modest speed logic. 

In order to determine the performance of a software-

based conventional system, for comparative analysis, the 

following assembly language program was coded for execu­

tion on the IBM System 370/68. The program searches 64 

bytes long subsets of the data and determines whether 

the data are equal-to, greater-than, or less-than the 

query. This is similar to the operation of the track 

buffer comparison logic in the proposed memory system. 

The program has 26 instructions which need to be 

executed each time a search-retrieve operation is per­

formed on the data. The IBM System 370/68 can execute 

approximately 2 million instructions per second. Therefore, 

the 26 instructions would require 13 micro-seconds to 

process the data. Since the time required for processing 

the data is substantial, there cannot be a continuous 

transfer of data from the memory to the processor without 

contention; the processor can keep up with the data transfer 

rate and the data can be processed at the same rate at 

which it comes off the memory in this simple case. However, 

if a 64 byte match were to be made at every byte location, 

the machine would be a factor of 32 too slow ((13x64)/25.6 = 

32). In contrast, the memory system in this project can 
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STMT SOURCE STATEMENT 

1 PRINT NOGEN 
2 ACHECK SETUPR 

17 OPEN (INDATA,(INPUT),RESULT,(OUTPUT)) 
25 PUT RESULT,HEADING 
30 READ GET INDATA,BUF 
35 MVC DATA(64),BUF 
36 GET INDATA,BUF 
41 MVC QUERY(32),BUF 
42 SR 3,3 
43 SR 4,4 
44 LA 5,DATA 
45 LA 6,QUERY 
46 COMDAT CLI 0(5),C ' 
47 BE COMQUE 
48 LA 3,1(3) 
49 LA 5,1(5) 
50 B COMDAT 
51 COMQUE CLI 0(6),C ' 
52 BE GETLEN 
53 LA 4,1(4) 
54 LA 6,1(6) 
55 B COMQUE 
56 GETLEN CR 3,4 
57 BC B'OlOO',NOTFOUND 
58 S 4,=F'l' 
59 LA 5,DATA 
60 COMPARE EX 4,INST 
61 BE FOUND 
62 LA 5,1(5) 
63 S 3,=F'l' 
64 CR 3,4 
65 BE NOTFOUND 
66 B COMPARE 
67 NOTFOUND MVC STATUS,NO 
68 PUT RESULT,DETAIL 
73 B READ 
74 FOUND MVC STATUS,YES 
75 PUT RESULT,DETAIL 
80 B READ 
81 EOF CLOSE (INDATA,,RESULT) 
89 RETURNR 
99 INDATA DCB DSORG=PS,MACRF=GM,DDNAME=DATAFL,RECFM=FB, 

LRECL=80,EODAD=EOF 
153 RESULT DCB DSORG=PS,MACRF=PM,DDNAME=RESULT,RECFM=FBA 

LRECL=133 
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207 INST CLC QUERY(O) ,0(5) 
208 YES DC CL3'YES' 
209 NO DC CL3' NO' 
210 BUF DS CL80 
211 HEADING DS 0CL133 
212 DC C ' 
213 DC CL20' ' 
214 DC CL4'DATA' 
215 DC CL60' • 
216 DC CL5'QUERY' 
217 DC CL30' • 
218 DC CL5'MATCH' 
219 DC CL8' ' 
220 DETAIL DS 0CL133 
221 DC C ' 
222 DC CL20' ' 
223 DATA DS CL64 
224 QUERY DS CL32 
225 STATUS DS CL3 
226 DC CL13' ' 
227 END ACHECK 
228 =F'l' 
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process the data at a rate which is more than the data 

transfer rate of the storage system even for the most 

stringent case. Clearly, for the basic operations that 

are needed in a relational database management system, the 

performance of the proposed memory system is far superior 

when compared to conventional software-based systems. 

Cost Effectiveness 

The cost effectiveness of the proposed memory system 

is now demonstrated. The system uses 2 registers which are 

each 32 to 64 bytes long. These registers would require 

64 to 128 SN74LS164 chips if they were constructed of MSI 

devices. The 32 to 64 bytes long latch needs 32 to 64 

SN74LS273 chips and the 32 to 64 comparators require 64 

to 128 SN74LS85 chips. A small additional number of SSI 

chips would be used to combine the outputs of the com­

parators and for other purposes. 

In a real system, a designer would most assuredly turn 

to LSI or VLSI chips. However, if one assumed an average 

board cost of $10/IC for the MSI design and an end user 

multiplier of 6 for end user price, each 32 byte track 

buffer would cost: 

$10 X (64 + 32 + 32 + 64 + 4) X 6 = $12,000. 

A system of 19 track buffers for a single disk drive system 

would then have an end user price of $12,000 x 19 = $228,000 
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or $448,000 for a two disk drive system. 

This amount would be about 10% to 20% of the assumed 

IBM 370 system; this would not be an unreasonable amount 

for a system primarily dedicated to relational database 

operation. However, with LSI or VLSI the track buffer 

cost could be expected to be reduced by 1 or 2 orders 

of magnitude to very attractive values. 

The IBM System 370 CPU provides registers which in­

clude the current program-status word, the general registers, 

the floating-point registers, and the control registers. 

The 16 general registers are each 4 bytes long. The four 

floating-point registers are 8 bytes long each. The CPU 

has provisions for 16 control registers which are each 4 

bytes long. In addition, the CPU contains the sequencing 

and processing facilities for instruction execution, inter­

ruption action, timing functions, initial program loading, 

and other machine-related functions. Most of the hard­

ware cost is in the large main memory however. Clearly, 

the proposed memory system is cost effective when compared 

with conventional software-based system if the main job is 

management of a relational database. 
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CONCLUSIONS 

In order to be considered a true relational system, 

a database system must posses at least the following 

attributes (3). 

1) All information is represented by data values. 

No essential information is contained in invisible connec­

tions among records. 

2) At the user interface, no particular access path 

is preferred over any other. 

3) The user interface is independent of the means by 

which data are physically stored. 

The proposed memory system in this project satisfies all of 

the above criteria. In addition, the architecture has a 

number of attractive features which make the system both 

performance and cost effective. Even though the system 

was modelled to meet the needs of university administrative 

data processing system, the results are general in that 

they could be used for other database management systems. 

The format used for the representation of the data 

is very similar to the normalized relational data model. 

Thus, the update, insertion, and deletion anomalies of 

unnormalized relations are avoided. By imbedding structure 

information in the data representation the processing of 

the data has been simplified. Because of the presence of 



www.manaraa.com

80 

the separators either an entire relation, tuples of a rela­

tion, or the attributes of a tuple satisfying the search cri­

teria can be output by the memory system to the processor. 

The database is clustered and the performance of the system 

is significantly improved due to this clustering. A minimum 

amount of indexing is used and the index has one entry for 

each relation in the database. 

The system derives its processing power from parallel 

processing and content addressing. The logic-per-track 

approach is used and each track in a cylinder has its own 

associated logic for content addressing. A cylinder of 

tracks is processed in parallel and in the track buffer 

comparison processing of the data with respect to the query 

proceeds in parallel with the loading of the next set of data. 

Due to the content addressing capability of the system, only 

selected data meeting the search criteria are output to the 

relational processor. This increases the effective utiliza­

tion of the processor and the overall throughput capacity of 

the system. 

Hardware techniques for data manipulation operations 

are desirable, feasible, and available. The proposed system 

can support simple retrieval operations and output data which 

are greater-than, equal-to, or less-than the query. Due to the 

ability to mask specified attributes of selected tuples, the 

projection operation can be done. The proposed system can 
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easily handle the update, insertion, and deletion of tuples 

and relations in the database. The lengths of the attributes 

and the tuples is unconstrained. In addition, the number of 

tuples in a relation and the number of relations in the 

database is unrestricted. The number of tracks in a cylinder 

and the number of disk drives can be changed without any 

modifications of the architecture. The proposed system is 

therefore very versatile. 

A simple analysis of the performance of the proposed 

system indicates that for the basic operations that are 

needed in a relational database management system, the 

performance of the proposed memory system is far superior 

to conventional software-based systems. The proposed memory 

system is also cost effective in comparison to software-

based systems if the main job is the management of a rela­

tional database. 

The principal contribution of this dissertation is the 

study and analysis of an associative memory system for a re­

lational database management system, with content addressing 

capability. The proposed system uses a single level of in­

dexing; an index on the name of the relation is required. 

The suggested format for the representation of the data is a 

modified version of the format used by the Symbol 2R computer 

to store structures. The format has structure information 
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imbedded in it to simplify the processing. The logic-per-

track approach is used and the memory system requires one 

relational processor. An architecture for the search 

logic has been proposed which enables the system to be per­

formance and cost effective in comparison to traditional 

software-based relational database management systems. 

It anticipates the effective use of LSI and VLSI circuits. 

Possible Further Investigation 

There are several topics for additional investigation 

related to this work. The traditional set operations of 

union, intersection, difference, and extended Cartesian 

product and the special relational operations of join, and 

division can be hardware implemented. This would provide 

a complete set of operations for the manipulation of the 

data. It would be interesting to investigate the feasi­

bility of a distributed microprocessor based configuration 

where a microprocessor and associated logic is used to 

process the data from each track in a cylinder. As a 

logical extension of the single-instruction multiple-data 

stream associative processor, it is worth examining a 

multiple-instruction multiple-data streaun architecture for 

supporting an interactive relational database management 

system. 
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